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a b s t r a c t

Dynamic Harmonic Regression (DHR) models are applied here to the investigation of the interannual
changes in the trend and seasonality of biogeochemical variables monitored in coastal areas. A DHR
model can be regarded as a time-series component model, where the phases and amplitudes of the
seasonal component, as well as the trend, are parameters that vary with time, reflecting relevant changes
in the evolution of the biogeochemical variables. The model parameters and their confidence bounds are
estimated by data assimilation algorithms, i.e. the Kalman filter and the Fixed Interval smoother. The
DHR model structure is here identified by a preliminary spectral analysis and a subsequent minimization
of the Bayesian Information Criterion, thus avoiding subjective choices of the frequencies in the seasonal
component. The methodology was applied to the investigation of the long-term and interannual vari-
ability of ammonia, nitrate, orthophosphate and chlorophyll-a monitored monthly in the lagoon of
Venice (Italy) during the years 1986e2008. It was found that the long-term evolutions of the biogeo-
chemical variables were characterized by non-linear patterns and by statistically significant changes in
the trend. The seasonal cycles of all the variables were characterized by a marked interannual variability.
In particular, the changes in the seasonality of chlorophyll and nitrate were significantly related to the
changes in the seasonality of water temperature at the study site and of nutrient concentrations in river
discharges, respectively. These results indicate that the methodology could be a sound alternative to
more traditional approaches for investigating the impacts of changes in environmental and anthropo-
genic forcings on the evolution of biogeochemical variables in coastal areas.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In recent decades, the efforts in monitoring biogeochemical
variables in coastal areas, e.g. chlorophyll and nutrient concentra-
tions, have increased worldwide, fuelled by concerns about global
warming (Smetacek and Cloern, 2008; Ducklow et al., 2009) or
responding to environment protection legislation, such as the
Water Framework Directive in Europe or the Ocean Act in USA,
Australia and Canada (Borja et al., 2008).

Decadal time series of biogeochemical variables are currently
available at several coastal sites such that appropriate time series
analysis tools could be applied for estimating both multi-annual
trends and systematic seasonal fluctuations.
ry, Prospect Place, Plymouth
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Indeed, changes in the trend as well as interannual variations of
the seasonal component could be related quantitatively to changes
of the climatic forcings (see for example Villate et al., 2008) or
changes of the anthropogenic pressures (see for example Guadayol
et al., 2009 and Aravena et al., 2009), that may trigger changes and
regime-shifts of the ecosystem (Folke et al., 2004; Viaroli et al.,
2008; Zaldivar et al., 2008; Widdicombe et al., 2010). Therefore,
univariate time series (TS) models that decompose the time series
of monitoring data into long-term, seasonal and random compo-
nents have proved to be valuable tools in the context of coastal-
system investigations. Component TS models can support different
analytical approaches such as ecosystem modelling (de Vries et al.,
1998), transfer function models (Villate et al., 2008; Aravena et al.,
2009), and wavelet analysis (Nezlin and Li, 2003; Kromkamp and
Van Engeland, 2010).

Recent attempts at applying univariate models to time series of
biogeochemical variables addressed their non-stationarity (Young
et al., 1991), but focused separately either on the estimation of
the non-linear trend or on the estimation of the seasonal
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component. For example, non-linear trends were estimated by
means of moving averages of zooplankton observations (e.g. David
et al., 2005), by fitting exponential and gamma models to nutrient
concentrations (Pastres et al., 2004), or fitting second-order poly-
nomials to chlorophyll concentrations (Kromkamp and Van
Engeland, 2010). On the other hand, shifts in the seasonal
patterns of a plankton time series were determined by Dowd et al.
(2002, 2004) by means of a Fourier model, with a single frequency,
whose time-varying phase and amplitudewere estimated using the
Kalman filter. The seasonality of the same time series was investi-
gated by Ikeda et al. (2008) by means of functional data analysis
with a Fourier basis. This method led a higher flexibility in the
choice of the model structure, allowing the subjective inclusion of
a second frequency in the seasonal component, which interannual
variability was investigated by means of derivative calculation and
curve registration. Nevertheless, the above methods were based on
the assumption that the long-term trend of the plankton time series
was not significant (Dowd et al., 2002, 2004; Ikeda et al., 2008).

Thus, the mentioned approaches to time series decomposition
do not address the root of the problem, as pointed out by Ikeda
et al. (2008), namely the simultaneous estimation of both the
trend and the seasonal component in presence of non-linear
changes of the mean level and interannual shifts of the periodical
component. Equally relevant is to provide uncertainty measures of
the estimates, in order to evaluate the statistical significance of the
changes of the biogeochemical patterns in the coastal area (Beck,
1987).

Given the above, Dynamic Harmonic Regression models (DHR;
Young et al., 1999) could represent a sound approach, since they are
characterized by a very flexible structure that allows the decom-
position of non-linear and non-stationary time series (Young et al.,
1999). Therefore, DHR models can present several advantages with
respect to classical analytical methods such as ARIMA or Census
models (see for example the discussions in Young et al., 1999, and
Pedregal and Trapero, 2007). The DHR parameters that define the
trend, the amplitude and the phase of the seasonal component are
regarded as time varying and they are estimated simultaneously, by
means of data assimilation algorithms that process the data in
sequence. This approach allows the estimate of the trajectory in
time of the parameters and of the model output, as well as those of
their standard errors, even with respect to missing data (Young
et al., 1999). The trajectories of the parameters e and of their
standard error e could provide insights into the dynamic of envi-
ronmental systems, as shown in Young (1998), and were applied to
detect statistically significant changes of the trend of air quality
(Becker et al., 2006), and phase shifts of air temperature (Young,
2000).

In the framework of environmental studies, the DHR modelling
approach has already been applied to non-stationary time series
in hydrology (e.g. Keery et al., 2007; Chappel et al., 2009; Vogt
et al., 2010), climate science (e.g. Young, 1998; Young, 2000;
Taylor et al., 2007) and air quality studies (e.g. Romanowicz
et al., 2006; Becker et al., 2006, 2008). Nevertheless, to the
authors’ knowledge, the potentiality and usefulness of this
approach in the framework of coastal areas studies have not been
explored as yet.

The objective of the present work is to demonstrate the
potential advantages of applying Dynamic Harmonic Regression
models to estimate the non-linear trends and the interannual
variability of the seasonal cycles of highly noisy biogeochemical
data collected in coastal areas. The identification of the most
adequate DHR model is a key issue, which, however, has not been
fully addressed as yet from the theoretical point of view (Pedregal
and Trapero, 2007; Jiang et al., 2010). Therefore, in previous
applications this problem was addressed by exploiting “a priori”
a hypothesis (e.g. Vogt et al., 2010) or by using an arbitrary
threshold of model performance (e.g. Jiang et al., 2010). In this
work, we propose an operational procedure for the identification of
the adequate DHR model, based on a preliminary spectral analysis
(Young et al., 1999) and on the subsequent application of a Good-
ness-of-Fit criterion to a set of candidate models.

The method was successfully tested on twenty-year long time
series of monthly, highly noisy (inherently variable) observations of
chlorophyll-a, nitrogen, ammonia and orthophosphate monitored
in the shallow-water lagoon of Venice, Italy, during the years
1986e2008. This case study explores the potential advantages
offered by a peculiar feature of the method e i.e. the estimation of
the trajectories of the parameters characterizing the trend, the
seasonal component and their standard errors e for: i) detecting
statistically significant changes of the trends of the biogeochemical
variables, and ii) investigating the relationships between the
interannual variability of the seasonal cycles and that of the envi-
ronmental forcings.
2. Methods

2.1. The Dynamic Harmonic Regression model

The Dynamic Regression (DHR) model, described in detail in
Young et al. (1999), is a non-stationary univariate time series model
that can be represented in the following component form:

yt ¼ Tt þ ST þ et etwN
�
0; s2

�
(1)

where yt is the observed time series, and Tt, St, and et, represent the
trend, seasonal and stochastic components, respectively. In Eq. (1)
et is a normally distributed random sequence with zero mean and
variance s2, and St has the form of a harmonic regression model or,
equivalently, of a Fourier polynomial:

ST ¼
XR
i¼1

�
ai;tcosðuitÞ þ bi;tsinðuitÞ

�
(2a)

where ui ¼ (2pi)/s, i ¼ 1, 2,., R are the fundamental and harmonic
frequencies of the sinusoidal term i, and s is the period of the
fundamental cycle. The number R of the sinusoidal components
needs to be opportunely estimated when applying the DHR model,
as described in Section 2.2.

Equation (2a) can be rewritten in an equivalent form that puts in
evidence the meaning of the parameters ai,t and bi,t, i ¼ 1,., R:

ST ¼
XR
i¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i;t þ b2i;t

q
cos
�
uit þ tan�1�bi;t=ai;t���

¼
XR
i¼1

�
Ai;tcos

�
uit þ fi;t

��
(2b)

As one can see in Eq. (2b), the parameters ai,t and bi,t define the

amplitude Ai;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i;t þ b2i;t

q
and the phase fi;t ¼ tan�1ðbi;t=ai;tÞ of

the sinusoidal term i.
Themodel in Eqs. (1) and (2) is different from a classical additive

time series model (see for example the Census decomposition
approach in David et al., 2005) because the parameters which
define the trend, i.e. Tt itself, and the seasonal component St, i.e. ai,t
and bi,t, are modelled as Time Variable Parameters (TVPs), i.e. as
stochastic variables. As a consequence, also the amplitudes Ai,t and
the phases fi,t of the harmonic components in Eq. (2b) can vary
with time (Young et al., 1999).
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The TVPs are indicated with Xj
t in the following, and their time

evolution is modelled accordingly to a Generalized Random Walk
model (GRW; Young et al., 1999):

Xj
t ¼ ð1 0 Þ

 
xj1;t
xj2;t

!
 
xj1;t
xj2;t

!
¼
�
aj bj

0j gj

�0@ xj1;t�1

xj2;t�1

1Aþ
�
d 0
0 1

� 
hj1;t

hj2;t

!

¼ Fjxjt�1 þ Gjhj
t�1

(3)

In Eq. (3),Xj
t , j¼ 0,1,., 2R represent the parameters Tt, ai,t and bi,t,

i¼ 1,., Re defined in Eqs. (1) and (2)e and a, b, and g are constants
which define the type of GRWmodel adopted for Xj

t. For example, by
setting a ¼ b ¼ g ¼ 0 and d ¼ 1, one obtains a simple RandomWalk
(RW)model, while for a¼ b¼ g¼ 1 and d¼ 0, a smoother Integrated
RandomWalk (IRW) model is obtained (Young et al., 1999).

The two stochastic state variables x j
1;t and x j

2;t can be interpreted
as the changing level and the changing slope of the parameterXj

t and
their total number in a DHR model with R components is n ¼ 2
(2Rþ1). The temporal changesofXj

t aregivenbyhj1;t andh
j
2;t , that are

zero mean, serially uncorrelated, white noise variables with equal
variances bsui

2. The variances bsui
2, i ¼ 0,., R ðbsu0

2 refers to the trendÞ
are called the hyper-parameter of the DHR model, and their values
are collected in the block covariance diagonal matrix Q(n � n). The
hyper-parameters bsui

2, as well as the variance s2 in Eq. (1), are
unknown and need to be estimated. As pointed out in Young et al.
(1999) the problem of estimating bsui

2 and s2 can be conveniently
cast by estimating the noise to variance ratios bsr;i

2 ¼ s
2
ui
=s2, i.e.

Qr ¼Q/s2. In order to estimate this ratios, we applied themethod of
estimation in the frequency domainpresented inYounget al. (1999),
which has been proved to be advantageous, e.g. with respect to
Maximum Likelihood estimation, when applied with DHR models
and environmental data (Younget al.,1999; Taylor et al., 2007;Keery
et al., 2007; Vogt et al., 2010). The method requires the preliminary
estimation of the empirical spectrum of the time series bymeans of
an auto regressive model, which order is identified by using the
Akaike Information Criterion (AIC). The logarithm of the empirical
spectrum is then approximated by the logarithm of the pseudo-
spectrum of the DHR model. To this aim, an objective function is
minimized, by using a non-linear least square algorithm, which
provides the estimates of the ratios bs2

r;i.
In order to estimate the TVPs Xj

t in Eq. (3) e and thus the
temporal changes of the trend Tt and of the phases fi,t and ampli-
tudes Ai,t in Eqs. (1) and (2) e Eqs. (1)e(3) are rewritten in the
following State-Space form (Young et al., 1999):

Observation equation : yt ¼ hT
t xt þ et (4a)

State equations : xt ¼ Fxt�1 þ Ght (4b)

In Eq. (4a) yt is the observed time series, the vector

xt ¼ ðx01;tx02;t. x2R1;tx
2R
2;tÞT collects the n ¼ 2(2R þ 1) additional state

variables xj1;t and xj2;t defined in Eq. (3); the (n � 1) vector

ht ¼ ð10 cosðu1tÞ0 sinðu1tÞ0.cosðuRtÞ0 sinðuRtÞ0Þ collects the

sinusoidal terms in Eq. (2a) and accounts for the definition of Xj
t in

Eq. (3); and the stochastic variable et, with variance s2, is defined as in
Eq. (1).

Eq. (4) describe the temporal dynamic of the state variables x j
1;t

and x j
2;t in Eq. (3), driven by the (n � n) block matrixes F, G and by

the (n � 1) vector ht, which collect, in the opportune positions, the
matrixes F j, G j and hi

1;t defined in Eq. (3).
In the framework of the DHR modelling approach, the estima-

tion of temporal dynamic of x j
1;t and x j

2;t in Eq. (4) is carried out by
using in sequence the Kalman filter and the Fixed Interval
Smoothing (FIS) algorithms (Young et al., 1999). The Kalman filter
processes the time series from the first up the last observation and
provides initial estimates of the TVPs evolutions, which are then
refined by processing the observations singularly and in reverse
order, using the FIS algorithm. In this way, the mean square error of
the one-step-ahead predictions of yt is minimized.

In the last decades, recursive algorithms like the above ones
have been often referred to as “data assimilationmethods”, coupled
with mechanistic or statistical models (see for example Cohn et al.,
1994, and Romanowicz and Young, 2003), and the same termi-
nology has been adopted in the present paper.

It is of note that the application the Kalman filter and FIS
algorithm with the model in Eq. (4) allows one the simultaneous
estimation of the trend and of the seasonal component, and
provides estimates of the error covariance matrix bPt of the time-
varying parameters (Young et al., 1999). This matrix, which
cannot be estimated in such a straightforward way when the
time series components are estimated separately and in
sequence, allows one i) to estimate the uncertainty of the DHR
model outputs, and ii) to detect statistically significant changes of
model parameters that can be ecologically relevant (e.g. the slope
of the trend), as it is exemplified in the case study.

2.2. Identification of the seasonal component

The identification of the seasonal component was carried out in
this work according to a procedure which was found to be suitable
for the analysis of noisy time series of biogeochemical data. This
procedure aims to address the current lack of consensus on the
criteria for selecting the number R of harmonics of the DHR model
(see Eq. (2)), when dealing with noisy time series potentially
characterized by very high number of relevant frequencies
(Pedregal and Trapero, 2007; Jiang et al., 2010).

The approach consists in i) a preliminary spectrum analysis of
the time series, and ii) a subsequent search of the minimum of
a Goodness-of-Fit index e which includes a penalty factor for the
model complexity e within a set of candidate models.

The preliminary spectrum analysis is part of the DHR modelling
approach presented in Young et al. (1999). It consists in the esti-
mation of the spectrum of the time series by using an Auto
Regressive (AR) model, with constant parameters, and with order n
identified by reference to the Akaike Information Criterion. The
peaks in the AR(n) spectrum define the most relevant frequencies,
which are here used for constructing a set of candidate models of
the seasonal component.

The set of candidate models is obtained by starting with the
model including the most relevant frequency identified in the
preliminary analysis, and progressively adding the second, third,
etc. most significant frequencies, according to the descending
values of their spectrum power. For the sake of interpretability, the
frequencies were rounded to the annual harmonic values e i.e. 1/
12, 1/6, 1/4 etc. e when the numerical differences were small, i.e.
less than 5%. The candidate DHR models are then applied to esti-
mate byt , after setting the noise to variance ratio of the model
parameters equal to zero. The “best”model in the set is the one that
minimizes the Bayesian Information Criterion (BIC; Schwarz, 1978):

BIC ¼ Nln

0BBB@
PN
t¼1

�
yt � byt�2
N

1CCCAþ klnðNÞ (5)

where N is the number of observations, yt and byt are, respectively,
the observation and its DHR estimate at time t, and k¼ 1þ (R� 2) is



Fig. 1. The lagoon of Venice, Italy, and the study site.

Table 1
The monthly biogeochemical data collected at the study site during the years
1986e2008.

Years Ammonia Nitrate Orthophosphate Chlorophyll Reference

Apr 86eDec 90 X X X X Alberotanza
and Zucchetta
(1992)

Feb 92eJun 94 X X X Sfriso and
Pavoni (1994)

Jan 95eJul 99 X X X X (from
Jul 97)

MAV (1999)

Sep 00eDec 03 X X X X MAV (2004)
Jan 04eDec 05 X X X X MAV (2006)
Feb 07eDec 08 X X X X MAV (2009)
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the number of parameters when R sinusoidal components, besides
the trend, are included in the model.

The model that minimizes the BIC index in Eq. (5) defines which
frequencies are included in the model that is used to describe the
time series under investigation. The BIC index is a consolidated
statistical criterion for model selection (see for example
Mestekemper et al., 2010), which decreaseswith the residual sumof
squares RSS ¼ PN

t¼1ðyt � bytÞ2, and increases when the model
complexity e i.e. the number of model parameters k e increases.
Thus, the model which minimizes the BIC value can be regarded as
a suitable compromise between accuracy and complexity.

A relevant aspect of the above procedure is that a DHR with
constant parameters is used in the place of theDHRmodelwith time
variable parameters, as a consequence of setting the noise to vari-
ance ratios equal to zero. The relevance of this approximation,which
is functional to the applicability of the BIC index, is addressed in the
discussion.

2.3. Decomposition of the time series

Once the seasonal component has been identified, the DHR
model is applied to the decomposition of the time series by
modelling the trend Tt as an IRW (see eq. 3) and the seasonal
parameters ai,,t and bi,t as RW, and by applying the data assimilation
algorithms to their estimation. The choice of these GRWmodels for
the TVPs aims to estimate, on the one hand, a smooth long-term
component, and on the other, to empathize the interannual
changes of the seasonal cycles over the time window spanned by
the data (Young et al., 1999).

The adequacy of the DHR model in decomposing the time series
is evaluated by analyzing the statistical distributions of the model
residuals bet ¼ yt � byt . Inparticular,we tested the symmetry of their
distribution by applying the stricter Lilliefors’ test of normality, at
the significance level of 1% (Sheskin, 2007). Themodel Goodness-of-
Fit was evaluated by calculating the coefficient of determination
R2 ¼ 1�PN

t¼1ðyt � bytÞ2=PN
t¼1ðyt � ytÞ2 where yt are the N

observations,yt their mean value, and byt the model estimates.
The signal-to-noise ratio (SNR), which estimates the balance

between the deterministic and stochastic component of the time
series, is evaluated as the mean value of the ratios between the
model estimates of the data and the associated time variable
standard errors (Dowd et al., 2004): SNR ¼ hbyt=sy;ti where sy,t is
provided by the error covariance matrix bPt .

2.4. Case study

The methods outlined above were tested in the decomposition
of time series of nitrate, ammonia, orthophosphate and chloro-
phyll-a monthly data collected during the years 1986e2008 in the
lagoon of Venice (Italy), at the study site shown in Fig. 1. These time
series were collected in the framework of several scientific and
institutional monitoring activities (see Table 1), and they are among
the longest and more complete available for the lagoon of Venice
(Pastres et al., 2004; Penna et al., 2007; Solidoro et al., 2010).

The study site is located in a shallow area of the Central Lagoon
(average depth w1 m), which severely experienced from eutro-
phication in the eighties (Sfriso and Marcomini, 1996). The area is
located closed to the mouth of the Naviglio Brenta river (Fig. 1),
which discharges agricultural pollutants from the drainage basin,
as well as the emission of a waste water treatment (WWT) plant.
The influence of these pollution sources on the evolution of the
biogeochemical variables at the study site have been suggested in
Solidoro et al. (2010). In the present work, we exploited the avail-
able data of nitrate concentrations collected in the Naviglio Brenta
river in the years 2000e2007 by the Regional Agency of
Environmental Protection (Arpav, 2009), in order to discuss the
outcomes of the decomposition of the biogeochemical time series
collected at the study site. For the same reason, we exploited also
water temperature data collected at the study site in the framework
of the monitoring activity “MELa” in the years 2001e2008 (MAV,
2004, 2006, 2009). The time series of the nutrient concentrations
at the river mouth and the water temperature data at the study site
were decomposed by means of DHR models, following the proce-
dure outlined in the previous sections.

The biogeochemical data were log-transformed prior of the
analysis in order to stabilize their variance (Dowd et al., 2002):
yt ¼ log10ðy*t þ 1Þ, where y*t indicates the original data, and yt the
time series of the log-transformed observations.

The case study was carried out in MATLAB� computing environ-
ment, by using the DHRmodelling functions of the toolbox CAPTAIN
developed at the Lancaster University, UK (Taylor et al., 2007).
3. Results

The results of the preliminary spectral analysis aimed to the
selection of the DHR models for each biogeochemical variable are
presented in Fig. 2, which shows the AR(n) spectra that minimize



Fig. 3. The rescaled BIC values as a function of the number of sinusoidal components R.
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the AIC index. These show that the time series are characterized by
a trend, as indicated by the maxima of the power at periods
comparable to the time series length. Moreover, in all cases the
highest peaks corresponded to the fundamental cycle of period
w12 months, while lower spectra values were obtained, in most of
the cases, at the harmonics corresponding to periods of w6, w4
and w3 and w2.4 months.

The results of the application of the BIC criterion to the set of
candidate models are presented in Fig. 3. The Figure shows the BIC
values, rescaled in the range 0e1, as a function of the number R of
the sinusoidal terms in Eq. (2). The different number of harmonics
accounted for in the BIC minimization, with respect to the
different time series, reflects the number of relevant frequencies
identified in the preliminary spectrum analysis, which is
maximum e and equal to 10 e for orthophosphate (see also
Fig. 2). As one can see in Fig. 3, the BIC minima are unambiguously
found at Ramm ¼ 1, Rnit ¼ 1, Rorthoph ¼ 1, and Rchl ¼ 2, which means
that the seasonal cycles of the three nutrient concentrations
present only a 12 month periodicity. On the other hand, the
chlorophyll model includes also the first harmonic, with period six
months, but its relevance is lower with respect to the fundamental
component, as indicated by the lower value of the spectrum
power associated with the first harmonic (Fig. 2).

The overall performance of the DHRmodels in decomposing the
time series is summarized in Table 2. As one can see, the estimated
signal-to-noise ratios SNR were in all the cases greater than one,
indicating the identifiability of a deterministic signal. However, the
noise was not negligible, in particular for the chlorophyll time
series, which had the lowest value of SNR. Themodel residuals were
in all the cases symmetric and normally distributed at a 1%
Fig. 2. The AR(n) spectra that minimize
significance level, based on the Lilliefors’ test. Moreover, the R2

values indicate that the models can explain at least the 50% of the
data variance, for ammonia concentrations, but the fraction of
explained variance is as high as 83% for nitrate.

The results of the time series decomposition are presented in
Fig. 4, which shows, for each variable: i) the model output byt and
the trend component bTt compared to the log-transformed obser-
vations yt (graphs on the left); and ii) the seasonal component bSt
compared to the log-transformed, detrended data: bydett ¼ yt � bT t

(graphs on the right).
In Fig. 4, the dotted lines represent the one-standard-error

bounds around the model estimates and the seasonal component,
provided by the error covariance matrix bPt .

In order to have a closer look at the interannual variations of the
seasonal component St, in Fig. 5 we plotted the temporal evolution
of the anomalies of both the amplitude and the phase around
their mean values: DAt ¼ At � At and Dft ¼ ft � ft , respectively.
Such evolution may provide valuable information about the
the Akaike Information Criterion.



Table 2
Results of the statistical analysis of the DHR model residuals of the biogeochemical
time series: number of residuals (N), mean value and standard deviation of the
residuals; significance of the Lilliefors’ test for normality (p). The last two columns
present the coefficient of determination of the DHRmodel (R2), and the values of the
signal-to-noise ratio (SNR) of the time series.

Variable N Mean value Std. deviation p R2 SNR

Ammonia 223 2.7 E to 08 2.9 E � 01 <0.01 0.47 5.2
Nitrate 209 �1.2 E to 09 1.5 E � 01 <0.01 0.83 10.1
Orthophosphate 221 �3.1 E to 08 2.3 E � 01 <0.01 0.69 4.4
Chlorophyll 172 3.9 E to 08 1.7 E � 01 <0.01 0.77 1.7
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relationships between changes in the ecosystem dynamics and
forcings, as it will be shown in the discussion.

Figs. 4 and 5 show that, in general, the evolutions of the
biogeochemical variables were characterized by non-linear trends
and by a marked interannual variability of the seasonal cycles
during the investigated twenty years.

In particular, the trends of ammonia and nitrate present some
analogies. Their mean levels were fairly constant during the first
ten years and then dropped to a lower plateau at the end of the
nineties. At the same time, the annual cycles of the two nitrogen
forms also changed. Indeed, the estimated annual oscillations of
both variables were rather flat in the first decade, in particular in
Fig. 4. Results of the decompositions of the time series of the biogeochemical time series.
(continuous thin line), the one-standard error band (dotted lines), and the trend bT t (bold lin
evolution of the seasonal component bSt (continuous line) and the one-standard error band
the years 1996e1998, and afterwards they became more
pronounced in the last decade. These changes of the seasonal cycles
are highlighted in Fig. 5 by the shift of the phases occurred in
1996e1998 and by the positive anomalies of the amplitude during
the last decade.

The trend of the orthophosphate had an evident decrease during
the first years of the investigated period, and stabilized to a fairly
constant value after the year 1990. A rather well defined seasonal
signal was evident during most of the years. Nevertheless, the
anomalies of the phase and of the amplitude frequently change
signs in two subsequent years, e.g. in the biennia 97e98 and 01e02,
indicating that the magnitude of the orthophosphate peaks as well
as the time of their occurrence can change rather markedly year-
by-year.

With respect to chlorophyll, the trend indicates that the mean
values were slightly lower in the last quinquennium rather than in
the eighties. Nevertheless, relatively high values of chlorophyll
where observed through the years 2001e2002. This change was
driven by the relative high summer peaks, observed in this period,
and it is highlighted by the positive anomalies of the amplitude of
the fundamental component (Fig. 5). The amplitude of the first
harmonic was lower with respect to the fundamental componente
as expected from the lower value of its spectrum power (Fig. 2) e
and Fig. 5 shows that the shifts of the harmonic were in general
The graphs on the left show the log-transformed data (points), the DHR estimates byt
e); the graphs on the right show the log-transformed, detrended data bydett (points), the
(dotted lines).



Fig. 5. Anomalies of the phase and of the amplitude of the seasonal components of
ammonia, nitrate, orthophosphate and chlorophyll.

Table 3
Results of the statistical analysis of the DHRmodel residuals of the forcing data time
series (nutrient concentrations at the Naviglio Brenta river andwater temperature at
the study site): number of residuals (N), mean value and standard deviation of the
residuals; significance of the Lilliefors’ test for normality (p). The last column
presents the coefficient of determination of the DHR model (R2).

Variable N Mean value Std.
deviation

p R2

Ammonia 89 �2.5 E to 08 0.28 <0.01 0.65
Nitrate 95 �3.7 E to 08 0.06 <0.01 0.84
Orthophosphate 86 �9.7 E to 08 0.12 <0.01 0.62
Water temperature 83 �2 E to 07 1.89 <0.01 0.93
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negligible with respect to the ones of the fundamental component.
The most relevant shifts of the phase were observed for the
fundamental term, in particular in the last decade of the time series.

The results of the decomposition of the time series of nutrient
concentrations collected at the Naviglio Brenta river in the years
2000e2007, and of the water temperature data at the study site in
the years 2001e2008 are synthesized in Table 3. The table shows
that the DHRmodels were effective in decomposing the above time
series, since the model residuals were normally distributed
(p < 0.01) and the explained variance was at least 60% for the
nutrient concentrations, up to 93% for the water temperature.
4. Discussion

The results presented in Section 3 indicate that the Methods
here applied can be effective in decomposing the time series of
biogeochemical data collected in highly dynamic costal areas,
such as the Lagoon of Venice. Indeed, the DHR models proved to
be adequate to estimate the non-linear trends and the changes of
the seasonal cycles of ammonia, nitrate, orthophosphate and
chlorophyll during the years 1986e2008 despite the relatively low
signal-to-noise ratios. The adequacy is indicated by the symmetric,
normal distribution of the residuals, and by the high values of the
variance explained by the models (see Table 2 and Fig. 4).

In the following, we discuss the critical aspects of the procedure
that we proposed for identifying the seasonal component of the
DHRmodels. The results of the lagoon case study are then exploited
to illustrate that the outcomes of the DHR modelling approach e

and in particular the estimates of the time variable model param-
eters e can be straightforwardly used: i) to detect statistically
significative changes of the trend of the biogeochemical variables
and ii) to investigate the relationship between the interannual
variability of the biogeochemical variables and of the environ-
mental forcings.

4.1. The model identification

The identification of the seasonal component, i.e. the selection
of the R harmonics in Eq. (2), is a relevant and critical step in the
time series decomposition, which has mostly been dealt using a-
priori knowledge and subjective criteria in the framework of
biogeochemical studies (see for example Dowd et al., 2002, 2004;
David et al., 2005; Ikeda et al., 2008), apart from few exceptions
(see for example Dejak et al., 1993). Nevertheless, the lack of
“a priori” knowledge or wrong assumptions can lead to miss
cyclical signals that can be relevant for characterizing the particular
ecosystem under investigation (Ikeda et al., 2008).

In the lagoon case study, we selected the harmonics of the
seasonal component of the DHR models by means of an original
procedure (see Section 2.2), which has the advantage of providing
reproducible results, despite it being an approximation of a rigorous
method of model identification, as argued in the following.

The procedure responds effectively to the need for sub-sampling
the most relevant frequencies, amongst the whole set identified by
the AR(n) spectrum, when dealing with highly variable biogeo-
chemical data. Indeed, it has been pointed out that the AR spectrum
can peak out frequencies with relatively low power, which can
over-complicate the DHR model with respect the brought benefits,
when applied with noisy data (Pedregal and Trapero, 2007; Jiang
et al., 2010). That is evident, for example, in the nitrate spectrum
in Fig. 2, where the power corresponding to the three-month
period is two orders of magnitude lower with respect to the main
peak at twelve months. On the other hand, Fig. 2 shows that several
frequencies of ammonia data had comparable, relatively high
powers. In this case, the BIC criteria allowed us to exclude those
frequencies that did not lead to sufficient increases of the good-
ness-of-fit if compared to the increase of the model complexity.
Overall, the sub-sampling procedure based on the BIC allowed us to
simplify the model structures, avoiding subjective choices adopted



Fig. 6. Time evolution of the slope of the trends during the years 1986e2008
(continuous line). The dotted lines represent the standard deviation band to the 95%
confidence limit; the dashed line indicates the zero slope, i.e. no rate of change of the
trend.
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in some previous applications of DHRwith environmental data (see
for example Vogt et al., 2010), or the use of arbitrary thresholds of
model performance adopted in Jiang et al. (2010).

Nevertheless, the procedure we adopted is an approximation of
a rigorous identification method, because we used a DHR model
with constant parameters for identifying the seasonal component
of a DHR model with time variable parameters. This approximation
is functional to the applicability of the BIC index (Schwarz, 1978). In
our opinion, the following considerations can support the use of the
approximation in practical applications with time series of
biogeochemical data collected in coastal areas.

Firstly, our procedure partly resembles the identification
procedure commonly adopted for the identification of a different
type of regressive model with time variable parameters, i.e. the
Dynamic Auto Regressive model (DAR, Young et al., 1991). Indeed,
in that context, the Akaike Information Criterion is used with a DAR
model with constant parameters to identify the order n of the DAR
model with time variable parameters. Such a method was
successfully applied with environmental data in Young et al. (1991),
in the forecast of atmospheric CO2 evolution.

Secondly, the case study presented in this work indicate the
effectiveness of the procedure with highly noisy biogeochemical
data collected in a complex coastal area, as indicated by the
statistical analysis of the model residuals in Table 2. Moreover, the
outcomes of the identification procedure were qualitative coherent
with literature findings on the seasonal cycles of the biogeochem-
ical variables in temperate coastal zones, and in the Lagoon of
Venice in particular, as it is discussed in Section 4.3.

4.2. Detecting significant changes of the trends

As an alternative approach to the DHRmodel, one could develop
the time series analysis as suggested by Ikeda et al. (2008), i.e. by
estimating separately non-linear long trend components (as for
example in Pastres et al. (2004); Aravena et al. (2009)), and the
seasonal component of the detrended data, by means of Fourier
analysis (as in Dowd et al., 2004), functional data analysis (as in
Ikeda et al., 2008), or wavelet transforms (Kromkamp and Van
Engeland, 2010). However, those approaches do not provide
a straightforward way for estimating the confidence band for the
predictions and for the time series components: this complicates
the ability to establish, on a statistical basis, whether changes in
trends and seasonal cycles are significant. The appeal of the DHR
approach is that non-linear trend and the seasonal component
parameters are estimated simultaneously in a unified data assimi-
lation framework. In this framework, the uncertainties on themodel
parameters are tracked in time by propagating the error covariance
matrix bPt of the state vector, which includes the model parameters.

As exemplified in the following, bPt can be exploited for inves-
tigating the statistical significance of changes of the long-term
component of the biogeochemical time series. Indeed, the graphs in
Fig. 4 showed that the DHR models led to the identification of non-
linear trends in the period 1986e2008. In particular, the analysis
detected changes of the mean levels of the nutrient concentrations,
which occurred at the end of the 1980s for orthophosphate, and at
the end of the 1990s for ammonia and nitrate. In all cases, the trend
decreased and stabilized at lower levels. On the other hand, chlo-
rophyll level increased during the 2-year period 2001e2002, and
decreased in the subsequent years.

The statistical significance of these trend changes can be easily
assessed with the DHRmodels from the trajectory of the parameter
xj2;t in Eq. (3), which defines the changing slope of the trend
component (Becker et al., 2006). The evolution of this parameter is
shown in the graphs of Fig. 6, together with the standard deviation
band to the 95% confidence limit, drawn by the error covariance
matrix bPt . Fig. 6 shows that the trend shifts of the nutrients
mentioned above were in all the cases statistically significant,
because the corresponding values of the slope parameter were
different from 0, at a confidence level of 95%. The negative values of
the slopes indicate significant decreases of ammonia around year
1997, of nitrate in 1999, of orthophosphate in the years 1986e1990.
It is of note that themean values of nitrate increased significantly in
the last period of the time series, as highlighted by the significant
positive values of the slope in the year 2008.

The results of the trend analysis presented in Fig. 4 and sup-
ported by Fig. 6 are partially consistent with the findings in Pastres
et al. (2004), which estimated exponentially decreasing trends of
ammonia and orthophosphate at the same study site, using data of
the period 1976e1999. Nevertheless, Pastres et al. (2004) estimated
a constant-value model to represent the trend of nitrate up to 1999.
The analysis here presented, based on the recent data of the
monitoring activity “MELa” (MAV, 2004, 2006, 2009), showed that
also the trend of nitrate is non-linear.

Moreover, the estimated trends at the study agree qualitatively
with the evolution of the anthropogenic pressures and ecosystem
changes described by local studies (see Solidoro et al. (2010)
for a review). In particular, the decreasing trend of orthophos-
phate during the years 1986e1989 follows the legislative



Fig. 7. The thin lines represent the seasonal cycles of the state variable during each
year in the period 1986e2008; the bold line represents the mean seasonal cycle over
the whole period.
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intervention of progressively banning the phosphorus from deter-
gents during the eighties. The significant decrease in nitrate and
ammonia concentrations at the end of the 1990s can be ascribed to
a series of legislative and management interventions that led to
marked reduction in the nitrogen discharges from the waste water
treatment plant nearby the study site (Regione Veneto, 2000).
Analogous negative trends of nutrient concentrations led by the
policy of load reduction have been recently demonstrated for the
Scheldt estuary (Soetaert et al., 2006) and for the Danish coast
(Carstensen et al., 2006), by analyzing time series of annual
nutrient concentrations collected by long-term monitoring
activities.

The trend of chlorophyll, that is a proxy of phytoplankton density
(Trees et al., 2000), resulted unrelated to the nutrient trends at the
study site; this confirms that direct relationships among nutrient
loads, concentrations and phytoplankton density are difficult to
establish in coastal areas, due to the complexity of the interacting
responses of the ecosystem to nutrient enrichment (Cloern, 2001;
Soetaert et al., 2006; Carstensen et al., 2006; Kromkamp and Van
Engeland, 2010). Nonetheless, a significant positive trend of chlo-
rophyll was observed in the year 2000 (Fig. 6), which led to the
relatively high concentrations in the years 2001e2002. The latest
high values havebeenput in relationwith the fast assimilationof the
nutrients supplied by rivers during the exceptionally rainy winter
2001 and spring/summer 2002 (Solidoro et al., 2004; MAV, 2004).
On the other hand, the relatively dry summers in the years
2003e2004, and the consequent relatively low inputs of nutrients,
could partly explain the subsequent significant decrease of the
chlorophyll concentrations (MAV, 2006). The relevance of episodic
nutrient discharges related to the sequence of droughts and mete-
orological events have been recently pointed out also by Guadayol
et al. (2009), related to the Blanes Bay in the Mediterranean sea.
By exploring a larger set of biogeochemical time series e i.e.
including turbidity, organic dissolved nutrients, and phytoplankton
measurements e these authors highlighted that meteorological and
biogeochemical events, such as those described here for the Venice
lagoon, can temporarily change a coastal ecosystem from heterotrophy
to autotrophy.

4.3. The interannual variability of the seasonal cycles in relation to
the forcings

The results of the case study indicate that the DHR model
allowed the estimation of the interannual variability of the seasonal
cycles of the biogeochemical variables at the lagoon site, as high-
lighted by the evolution of St in Fig. 4 and the by the model
parameter evolutions in Fig. 5. As illustrated in the following, the
interannual variability in the years 1986e2008 can be qualitatively
linked to the changes of the seasonal forcings, on the basis of
literature studies. On the other hand, the decomposition of the time
series of nutrient discharges and water temperature data available
for the years 2001e2008 (see Table 3), allows us to show that the
trajectory of the DHR model parameters can be used to investigate
quantitatively the relationships with the forcings.

The changes of the seasonal cycle in each year around the mean
value in the period 1986e2008 are redrawn from Fig. 3 in the
graphs of Fig. 7. The figure indicates that the mean seasonal cycles
of each variable (bold lines) agreed with the typical pattern
observed in temperate coastal areas (see for example Cloern, 2001;
Villate et al., 2008; Aravena et al., 2009; Kromkamp and Van
Engeland, 2010) and in the Venice lagoon (Dejak et al., 1993), and
that they can be in turn related to the seasonal cycles of the envi-
ronmental forcings (Cloern, 2001; Solidoro et al., 2004). Indeed,
Fig. 7 shows that the highest values of nutrient concentrations were
observed on the average in winter and autumn, when
precipitations drive relevant nutrient discharges from the drainage
basin to the lagoon (Solidoro et al., 2004), and lower concentration
were measured during the drier, spring-summer seasons. In these
latter seasons, the values of chlorophyll increase, due to the
phytoplankton growth that is stimulated by the higher irradiation
and that contributes to reducing the nutrient concentrations by
assimilation (Cloern 2001; Solidoro et al., 2004). Nevertheless,
chlorophyll peaks can occur in FebruaryeMarch at some years
(Fig. 7), as a consequence of winter diatom blooms influenced by
water temperature anomalies and nutrient discharges in the study
area (Socal et al., 1999). The sporadic occurrence of such high
winter values explains the BIC selection of a six month harmonic in
the seasonal model of chlorophyll (see Fig. 3).

Nevertheless, Fig. 7 shows also that, at some years, the seasonal
cycles can change relatively to the multi-annual mean. These
changes are highlighted by the changes in the amplitude and phase
values shown in Fig. 5. In particular, a relative change in these two
parameters was detected for ammonia at the end of the nineties.
During the years 1992e1998, the amplitude of the seasonal



Fig. 8. Evolutions and cross-correlations (rs Spearman, p < 0.01) between the anom-
alies of the phase and of the amplitude characterizing the evolution of the biogeo-
chemical variables and the evolution of the environmental forcings, i.e. the nutrient
concentration in the river and the water temperature at the study site.
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oscillations of ammonia was relatively low and the seasonal peaks
were estimated to occur in September/October (see Fig. 4). The
subsequent change of the amplitude (Fig. 5) is reflected in Fig. 4 by
the increase of the range of the oscillations in the period
2001e2008, while the phase change lead the seasonal peaks of
ammonia to move towards November/December. These changes
may be reasonably related to the decrease in the urban and
industrial nitrogen loads from the Naviglio Brenta river, due to the
upgrading of the waste water treatment plant in the 90’s (see
Section 4.2). This management intervention may have led the
agricultural loads e driven by the seasonal precipitation e to
become a relevant driver of the seasonal pattern of ammonia in the
last decade.

The relationships between the changes of the seasonal cycles of
the biogeochemical variables and of the environmental forcings
could be extended for the years 2001e2008. Indeed, for these later
years, we could compare the estimates of the phase and amplitude
evolutions in Fig. 5, with the parameter trajectories obtained in the
decomposition the time series of nutrient discharges and water
temperature data available for the years 2001e2008 (see Table 3).

This comparison is exemplified in Fig. 8, which shows that the
amplitude and the phase of the nitrate concentrations at the study
site and at the Naviglio Brenta river were significantly correlated in
the years 2001e2008 (Spearman correlation rs, p < 0.01). This
outcome indicates that the interannual variability of the seasonal
cycle of nitrate was significantly modulated by the year-by-year
variability of the concentrations in the river, and provides valuable
insights on the bio-physical processes that influence the dynamic of
nitrate at the study site. Indeed, the rapid temporal response of the
concentrations at the study site to the pulses from the river e i.e.
the phase correlation e and the correspondence of the absolute
values of the pulses e i.e. the correlation of the amplitudes e

indicate that straight transport and dilution of the river loads were
the main drivers of nitrate at the study site during the investigated
period. The physical processes in this case dominated over the
biogeochemical processes of nitrate utilization and regeneration at
the land/coast interface (see Soetaert et al., 2006), and that can be
explained by the presence of a deep canal that conveys the fresh-
water to the study area (see Fig. 1), in accordance with the findings
of Solidoro et al. (2004). On the other hand, relevant correlations
were not found between the parameter trajectories of orthophos-
phate and ammonia concentrations in the river and at the study
site. This outcome indicate that these nutrients were involved in
more complex biogeochemical dynamics, in agreement with
Solidoro et al. (2004), as typically observed in coastal systems (e.g.
Cloern, 2001; Soetaert et al., 2006).

Fig. 8 shows also that a significant and high cross-correlation
was found between the phases of chlorophyll and water tempera-
ture, while no significant cross-correlations were found between
their amplitudes (not shown). These outcomes indicate that: i)
shifts in the timing of the plankton activity were significantly
linked to shifts of the seasonal cycle of the water temperature
during the years 2001e2008; but ii) the absolute values of the
plankton density were not significantly influenced by the peak
values of the physical forcing. This result agrees with the findings of
Sfriso and Marcomini (1996) and Socal et al. (1999), which high-
lighted the relevance of the winter/spring anomalies of tempera-
ture in determining shifts of the primary community at the study
site. Interestingly, Kromkamp and Van Engeland (2010) related
qualitatively the phase shifts of the phytoplankton biomass in the
Scheldt estuarye exploredwithwavelet transformse to changes of
the water temperature driven by global warming. That suggests the
potential application of the phase estimates provided by the DHR
model for investigating quantitatively the phenological responses
of phytoplankton to climate changes in coastal areas.

5. Conclusions

The advantages of applying DHR models (Young et al., 1999) to
investigate non-linear trends and changes in the seasonal cycle of
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biogeochemical variables monitored in coastal areas was evaluated.
The effectiveness of the methodology was demonstrated by
applying it to the analysis of time series of ammonia, nitrate,
orthophosphate and chlorophyll data collected at one site of the
lagoon of Venice, during the years 1986e2008. Indeed, the DHR
models e selected in this work by using an operational and
reproducible procedureewere in all cases adequate to hindcast the
monitoring data, as confirmed by the statistical analysis of the
model residuals.

The application of this approach in the framework of coastal
area studies is a useful alternative, or support, with respect to other
methods of time series analysis. It allows the simultaneous esti-
mation of the time-varying trend and seasonal component by
means of well established data assimilation algorithms, which also
provide estimates of the model uncertainty (Young et al., 1999).

The data assimilation algorithms are currently available in
academic and commercial software (e.g. the CAPTAIN toolbox by
Taylor et al. (2007)) that allows one to overcome the difficulties of
their application by non-statistical practitioners, pointed out by
Ikeda et al. (2008). Thus, the methods here applied can be a useful
tool to support stakeholders that carry out monitoring activities
with the purposes of the surveillance and safeguard of coastal areas.
Interestingly, DHRmodels have been recently appliedwith remotely
sensed land data (Jiang et al., 2010), indicating their potential use
with time series of ocean colour observations, which are retrievable
in coastal ecosystems (e.g. Ruddick et al., 2010).

The results of the lagoon case study suggest future applications,
behind the objectives of the present paper, based on a peculiar
outcome of the methodology, i.e. the estimates of the time variable
model parameters. Indeed, we found some significant cross-
correlations between the changes of the model parameters that
characterize, on the one hand, the seasonal evolution of the
biogeochemical variables at the study site and, on the other hand,
the seasonal evolution of the environmental forcings. This suggests
the possibility of investigating interrelationships between the
biogeochemical variables and the anthropogenic and environ-
mental forcings, by modelling the time variability of the parameter
as a function of the state variables, i.e. by representing the
parameters as State-Dependent according to the Data Based Model
approach (see for example Young, 1998; Young and Parkinson,
2002; Taylor et al., 2007; Lin and Beck, 2007). These further
applications are potentially useful to modelling the effects of
climate changes on coastal areas.
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