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Anthropogenic eutrophication affects the Mediterranean, Black, North and Baltic Seas to various extents.
Responses to nutrient loading and methods of monitoring relevant indicators vary regionally, hindering
interpretation of ecosystem state changes and preventing a straightforward pan-European assessment of
eutrophication symptoms. Here we summarize responses to nutrient enrichment in Europe’s seas,
comparing existing time-series of selected pelagic (phytoplankton biomass and community composition,
turbidity, N:P ratio) and benthic (macro flora and faunal communities, bottom oxygen condition) indi-
cators based on their effectiveness in assessing eutrophication effects. Our results suggest that the Black
Sea and Northern Adriatic appear to be recovering from eutrophication due to economic reorganization
in the Black Sea catchment and nutrient abatement measures in the case of the Northern Adriatic. The
Baltic is most strongly impacted by eutrophication due to its limited exchange and the prevalence of
nutrient recycling. Eutrophication in the North Sea is primarily a coastal problem, but may be exacer-
bated by climatic changes. Indicator interpretation is strongly dependent on sea-specific knowledge of
ecosystem characteristics, and no single indicator can be employed to adequately compare eutrophica-
tion state between European seas. Communicating eutrophication-related information to policy-makers
could be facilitated through the use of consistent indicator selection and monitoring methodologies
across European seas. This work is discussed in the context of the European Commission’s recently
published Marine Strategy Directive.

� 2009 Published by Elsevier Ltd.
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O1. Introduction

Eutrophication is widely recognised as a key problem affecting
Europe’s seas in the technical reports and policy statements of the
OSPAR (OSPAR Commission, 2000), Helsinki (HELCOM, 1991), and
Black Sea Commissions (Black Sea Commission, 1996), the Medi-
terranean Action Plan (MAP – UNEP, 1996), and the European
Environment Agency (EEA – Ærtebjerg et al., 2001). Additionally,
the minimisation of eutrophication effects is specifically mentioned
Hardy Foundation for Ocean
B, UK.
rs-Gollop).
cience, Dunstaffnage Marine
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as a requirement of good environmental status in the European
Union’s Marine Strategy Directive (European Commission, 2008).
A causal link between anthropogenic sources of nutrients and the
emergence of eutrophication symptoms is generally accepted
(Ærtebjerg et al., 2001; Smith, 2006). However, cause–effect rela-
tionships are not straightforward as coastal ecosystems respond to
nutrient loading in various ways. System-specific attributes may act
as a filter to modulate responses to enrichment and a complex suite
of direct and indirect responses may interact (Cloern, 2001); in the
Black Sea, for example, the combined effects of nutrient loading and
overfishing resulted in a trophic cascade which altered the eco-
system’s structure and dynamics (Daskalov, 2002). Other sources of
environmental degradation, such as toxic substances, overfishing,
and invasive species, as well as climate and natural variability, may
confound this causality (Caddy, 2000; MacKenzie et al., 2002;
Nixon and Buckley, 2002; MacKenzie and Koster, 2004; Oguz, 2005;
l do ecosystem indicators communicate the effects of anthropogenic
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McQuatters-Gollop et al., 2007). Our growing understanding of
anthropogenic impact on coastal systems (e.g. Cloern, 2001;
Elmgren, 2001) includes recognition of non-linear responses and
even regime shifts by entire ecosystems (e.g. Beaugrand, 2004).

From 2012 as a condition of the Marine Strategy Directive, EU
Member States must monitor relevant eutrophication indicators in
their waters; these indicators are required to be comparable
between regions (European Commission, 2008). Monitoring pro-
grammes, some underway for decades (Cociasu and Popa, 2004;
Wiltshire and Manly, 2004; Richardson et al., 2006), currently
record a range of relevant variables for assessment and periodic
reporting on the state of Europe’s marine environment. This paper
examines a selection of commonly reported indicators of
ecosystem state, focusing on those used to monitor marine eutro-
phication. The indicators examined here can be found in Annex III
of the Marine Strategy Directive which includes a list of physical,
chemical and biological indicators suggested for use in monitoring
progress towards good environmental status of marine waters
(European Commission, 2008). The aim of our research is therefore
to answer the following question: Do the eutrophication-relevant
ecosystem indicators suggested in the Marine Strategy Directive
provide consistent, scientifically founded information to European
policy-makers so that they can understand and compare eutro-
phication status in Europe’s regional seas?

Nutrient enrichment generates two primary, interrelated effects
in aquatic ecosystems: firstly, stimulation of phytoplankton growth,
and in some cases a change in phytoplankton species composition,
favouring opportunistic and even harmful species, in the pelagic
zone; and secondly, shading and deposition of organic matter in the
benthic zone. Our selection of ecosystem indicators distinguishes
between pelagic and benthic ecosystems to capture these primary
effects. From the large range of indicators and variables reported in
the literature (e.g. Gazeau et al., 2004, which also offers a compar-
ison of Europe’s regional seas), we confine ourselves to those for
which long data series exist for regions of Europe’s seas that suffer
U
N
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Fig. 1. SeaWiFS (Sea-viewing Wide Field-of-View sensor) remote sensing images showing c
and North – annual composite for 2007. SeaWiFS overestimates chlorophyll in waters with
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from eutrophication: the coastal North Sea, the Baltic Proper, the
Northern Adriatic Sea, and the northwest shelf of the Black Sea
(Fig. 1). Following a short description of our method, this paper
summarizes responses to nutrient enrichment in the regional study
areas. We then compare the indicators presented based on their
effectiveness in assessing eutrophication effects, and draw impli-
cations for policy.

2. Methods

The work presented here was part of the EU FP6-funded Euro-
pean Lifestyles and Marine Ecosystems (ELME) project. One of the
objectives of ELME was to gather as much information as possible
on well established ecosystem trends that could be used for the
future management of Europe’s seas. ELME used an ‘indicator’
approach to exploring change in Europe’s seas; although predictive
models are highly desirable for management purposes, they must
be fed with data, which have their own intrinsic value. Eutrophi-
cation was a priority issue of the project and a key product was the
aggregation and analysis of existing relevant long-term datasets in
European marine and coastal regions where eutrophication is
a historical concern. Many of the datasets gathered during ELME
coincide with the indicators listed in the Marine Strategy Directive.

2.1. Areas of study

The Baltic Proper forms the central and largest basin of the Baltic
Sea. The Baltic Proper is brackish, with a distinct north-to-south
salinity gradient, and is the most limited in exchange of the four
study areas. Nutrients entering the Baltic have long residence
times: between 4.4 and 22.5 years for P in the Baltic Proper (Sav-
chuk, 2005). The Baltic Sea’s catchment can be divided into
a northern boreal part draining into the Gulf of Bothnia and
a south-eastern part draining into the Baltic Proper (Savchuk,
2005). The latter is predominantly agricultural. Rivers, especially
hlorophyll concentrations in four European regional seas: Baltic, Mediterranean, Black
high-suspended substances, such as some coastal areas and the Baltic Sea.

l do ecosystem indicators communicate the effects of anthropogenic
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the Oder and Vistula draining Poland with its 40 million inhabi-
tants, and the Daugava and Nemunas, are the largest contributors of
anthropogenic nutrients (Stalnacke et al., 1999). Major cities such as
St. Petersburg, Helsinki and Stockholm are coastal point sources of
nutrients (HELCOM, 2006). In the Baltic, eutrophication is an open
water as well as coastal phenomenon (Elmgren, 2001). In open
waters, benthic and pelagic environments are coupled via a positive
feedback linking cyanobacterial blooms, bottom hypoxia and
sedimentary reflux of P (Conley et al., 2002; Vahtera et al., 2007).
This feedback partly inhibits recovery from eutrophication (Vahtera
et al., 2007). In coastal waters, the effects of eutrophication are
evident in the depth limitation of macrophytes, particularly Zostera
marina (Duarte, 1991; Nielsen et al., 2002; Krause-Jensen et al.,
2005), and increased macrozoobenthos biomass where flushing
prevents bottom hypoxia (Karlson et al., 2002; Perus and Bonsdorff,
2003).

Of the four seas, the coastal North Sea has the highest flushing
rate (water residence time is only 0.9 months, calculated from
Lenhart et al. (1995)) and inflow from the northeastern Atlantic
Ocean is the predominant source of nutrients. Rivers such as the
Rhine and Elbe, which drain much of northwestern Europe, are the
primary source of anthropogenic nutrients. Much has been done to
reduce riverine nutrient loads (Ærtebjerg et al., 2001). The main
sources at present are wastewater treatment plants that do not
remove nutrients from their effluents, and agriculture with its use
of fertilizers and production of manure (Ærtebjerg et al., 2001).
Riverine nutrient loads fuel phytoplankton growth in coastal
waters and in the shallower, relatively poorly flushed southern
North Sea. Hypoxia has occurred in some near-shore areas, notably
the German Bight (Brockman et al., 1988; Kronvang et al., 1993);
hypoxia is often associated with monospecific blooms of organisms
such as Phaeocystis that cause major ecosystem effects (Lancelot
et al., 2006). Additionally, coastal bays in the North Sea are
becoming increasingly prone to filamentous macroalgal blooms
(Krause-Jensen et al., 2007). However, eutrophication effects on
benthic environments in many regions of the coastal North Sea are
probably overshadowed by damage from trawling (Rijnsdorp et al.,
1998; Callaway et al., 2007).

Compared with the North, Black and Baltic Seas, the Mediter-
ranean is oligotrophic. However, the Northern Adriatic is one of the
most productive areas in the Mediterranean. It is a shallow (average
depth 35 m) enclosed basin with moderate flushing with a resi-
dence time of 3.3 months, calculated from Zavatarelli and Pinardi
(2003). The Northern Adriatic receives considerable fresh water
discharge (about 80 km3 yr�1), mainly from Italian rivers (e.g. Po,
Adige, Isonzo, Tagliamento) that drain intensely developed catch-
ments where about 50% of Italy’s national production of agriculture
and livestock, and 40% of its population, are concentrated (Pirrone
et al., 2005). These rivers discharge high nutrient loads making the
Northern Adriatic the most vulnerable area of the Mediterranean
regarding eutrophication (UNEP, 1996). In the 1980s, during the
period of peak discharge, the basin suffered severe eutrophication
with recurrent red tides (Marasovic et al., 1991,2005) and hypoxia
and anoxia crises (Vollenweider et al., 1992; Degobbis et al., 2000),
resulting in fish kills (Marasovic et al., 1991).

The Black Sea has very limited exchange with a residence time of
w2000 years for the whole sea (Ozsoy and Unluata, 1997) and 12
months for the northwest shelf (calculated from Gregoire and
Friedrich (2004)). However, it has a large, permanently anoxic
(below approximately 100 m), deepwater sink that serves to
remove nutrients from further biological activity. Eutrophication
symptoms are most pronounced in the relatively shallow north-
west shelf that comprises approximately 12% of the surface area of
the Black Sea. This shelf receives the discharge of Europe’s second
and third largest rivers (the Danube and Dnieper), together
Please cite this article in press as: McQuatters-Gollop, A., et al., How wel
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draining large parts of 12 countries. Increased use of fertilizers and
phosphate detergents, fossil fuel combustion and sewage reticula-
tion without nutrient removal led to loading of these rivers and
subsequent problems with eutrophication on the shelf (Mee, 1992).
Summer hypoxia as a result of eutrophication extended over most
of the shelf in the 1980s (Zaitsev and Mamaev, 1997). These hypoxic
events had become so severe in the late 1980s that huge quantities
of benthic organisms died and were washed up to decay on the
beaches of Romania and Ukraine (Zaitsev and Mamaev, 1997).
Eutrophication-related effects in shelf waters have lessened, largely
due to post-Soviet economic decline that has reduced nutrient
inputs (Mee, 2006).

2.2. Data availability and selection of ecosystem indicators

Both ELME and the Marine Strategy Directive distinguish
between indicators of ecosystem ‘state’ (referred to as ‘character-
istics’ in the Marine Strategy Directive) and indicators of anthro-
pogenic ‘pressures’ leading to ecosystem change (Langmead et al.,
2007; European Commission, 2008). This paper focuses on eutro-
phication-related state indicators rather than those representing
pressures. Although pressure indicators such as nutrient loads, can
potentially provide an early warning of eutrophication, there has
been limited investment in the science behind their use as indi-
cators, and quantitative links still need to be drawn between
pressures and state changes. While some advances in predictive

Qmodelling have been made (Vollenweider et al., 1998; examples in
Smith, 2003; Lancelot et al., 2006; Smith, 2006), these models are
often complex and the ecosystem responses to changes in nutrients
are system specific and difficult to generalize. Research into the
response of ecosystem state indicators to increased nutrients,
however, is further developed and representative time-series are
more widely available. While pelagic state indicators (such as
phytoplankton biomass or community composition) may provide
an early warning of eutrophication-induced change, indicators of
benthic state (such as hypoxia), although frequently used to assess
eutrophication, often provide information too late for response
(Mee, 2005). Thus the final selection of indicators per regional sea,
shown in Table 1, is a compromise among data availability (long
time-series), frequency of use in the literature, and sea-specific
features. Data were primarily obtained from published literature,
but a substantial effort was put into collecting and using datasets
which are unpublished or only published in the grey literature. In
many cases the data used here are also freely available on the
internet as a result of monitoring programmes. In general, data for
the North and Baltic Seas are much more readily available than
those for the Black and Adriatic Seas where few long-term moni-
toring programmes exist. Unfortunately, monitoring programmes
in the four study areas do not always collect similar data in the
same way.

The effects of nutrient enrichment can manifest in both pelagic
and benthic ecosystems. For the pelagic ecosystems, we identified
four general indicators: phytoplankton biomass (usually measured
as chlorophyll concentration) to capture enhanced phytoplankton
growth; Secchi depth, a measure of turbidity which addresses the
effect of enhanced phytoplankton growth on light penetration;
phytoplankton community composition; and N:P ratio to assess
possible effects of imbalanced nutrient enrichment on the phyto-
plankton. Nutrient ratios in coastal systems can differ markedly
from the Redfield ratio (Cloern, 2001), the average molecular ratio
at which phytoplankton require these two elements (Redfield et al.,
1963) and this may have an effect on pelagic food webs (Philippart
et al., 2000).

Because of the lack of coordination between observation
systems amongst Europe’s seas, different measures of
l do ecosystem indicators communicate the effects of anthropogenic
2.017
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Table 1
Ecosystem state indicators for eutrophication arising from the ELME project. Indicators were selected from existing datasets and were chosen based on dataQ9 availability,
relevance to study areas and frequency of use in the literature.

Study area Pelagic ecosystem Benthic ecosystem

Indicator (units) Reference identifying data source Indicator (units) Reference identifying data source

Coastal North Sea Secchi depth (m) McQuatters-Gollop et al. (2007) None No benthic indicators for
eutrophication were selected for
the North Sea as the effects of
eutrophication are probably
overshadowed by those of
trawling (Rijnsdorp et al., 1998;
Callaway et al., 2007)

Phytoplankton biomass (annual chlorophyll
a, mg m�3)

McQuatters-Gollop et al. (2007)

Proportion diatoms (ratio of
abundance of diatoms relative to
dinoflagellates)

Data from the Continuous Plankton
Recorder survey (SAHFOS, 2004)

N:P (molar ratio) McQuatters-Gollop et al. (2007)
Annual mean TN, TP (mM l�1) McQuatters-Gollop et al. (2007)

Baltic Proper Secchi depth (m) Aarup (2002) Max. depth of Zostera
marina (m)

Adapted from
Langmead et al. (2007)

N:P (molar ratio) (MARE – Marine Research on
Eutrophication)

Area of hypoxia
(summer, km�2)

Conley et al. (2002)

Phytoplankton biomass
(summer chlorophyll a, mg l�1)

ICES (2008)

Annual mean TN, TP pool (metric tons) (MARE – Marine Research on
Eutrophication)

Black Sea NW shelf Secchi depth (m) NIMRD (2008) Area of hypoxia (summer, km�2) Adapted from Mee (2006)
Phytoplankton biomass (summer wet
weight biomass, mg m�3)

Mytilus galloprovincialis
biomass (g m�2)

Langmead et al. (2009)

Proportion diatoms (ratio of abundance of
diatoms relative to dinoflagellates)
N:P (molar ratio) Area of Phyllophora field (km�2) Langmead et al. (2009)
Annual mean DIN, DIP (mM l�1)

Northern Adriatic Secchi depth (m) ARPAER (2006) Bottom dissolved oxygen
(summer, ml l�1)

ARPAER (2006)

Phytoplankton biomass
(summer chlorophyll a, mg l�1)

Adapted from ARPAER (2006)
and EEA (2006)

Proportion diatoms (ratio of abundance of
diatoms relative to dinoflagellates)

Adapted from Mazziotti et al. (2005)

N:P (molar ratio) Adapted from Mazziotti et al. (2005)
Annual mean DIN, TP (mM l�1) Adapted from Mazziotti et al.

(2005)
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phytoplankton biomass were used in each study area. While we
present chlorophyll data (mg l�1) for the Baltic Proper in Fig. 2a,
indicators of phytoplankton biomass are of limited applicability in
the Baltic Sea. High levels of dissolved organic carbon in Baltic
waters interfere with determination of chlorophyll concentrations
by remote sensing (Darecki and Stramski, 2004) whereas in situ
measurement of biomass is complicated by the non-uniform
distribution in the water column of cyanobacteria, the dominant
summer phytoplankton group in the low saline Baltic Sea (Kutser,
2004). Therefore, the chlorophyll concentrations indicated in Fig. 1
and based on remote sensing are very likely to be an overestimate.
Data on the extent and duration of cyanobacterial blooms were
available for 1997–2007 (Hanson, 2007) but, at only 10 years, this
time-series was too short to assess trends. For the Baltic Proper,
Secchi depth is an often used proxy for phytoplankton biomass
(Erlandsson and Stigebrandt, 2006; HELCOM, 2006). For the North
Sea, annual mean chlorophyll a (mg m�3) was derived from the
relationship between in situ phytoplankton biomass and remotely
sensed chlorophyll (see McQuatters-Gollop et al., 2007). In situ
measured summer chlorophyll a (mg l�1) is used in the Adriatic, and
summer phytoplankton biomass (mg m�3, wet weight) in the Black
Sea.

Data on phytoplankton community composition, expressed as
the ratio of abundance of diatoms relative to abundance of dino-
flagellates, were available for the North, Black and Northern Adri-
atic Seas. Phytoplankton community composition data for the
North Sea are from the Continuous Plankton Recorder (CPR –
SAHFOS, 2004) which records only large plankton and armoured
flagellates and underestimates abundance of other plankton groups
(such as nanoplankton or naked flagellates). However, the
proportion of cells captured by the silk reflects the major changes in
Please cite this article in press as: McQuatters-Gollop, A., et al., How wel
eutrophication?, Estuar. Coast. Shelf Sci. (2009), doi:10.1016/j.ecss.2009.0
abundance, distribution, and community composition of the
phytoplankton, and, most importantly, is consistent and compa-
rable over time (Batten et al., 2003; Richardson et al., 2006). Data
are available on phytoplankton composition in the Baltic, but
because a link between these trends and eutrophication has been
deemed uncertain, they are not assessed here (Jaanus et al., 2007).
Time-series measuring Secchi depth, nutrient concentrations (as
total nitrogen (TN), total phosphorus (TP), dissolved inorganic
nitrogen (DIN), and/or dissolved inorganic phosphorus (DIP)) and
molar N:P ratio were available for all four regional seas. As
mentioned above, there is regional variability in ecosystem
response to nutrient loading, and limited investment into the use of
nutrient concentrations themselves as indicators of eutrophication.
Consequently, this work focuses on ecosystem changes in response
to changing nutrient availability. We offer no in depth exploration
of change in nutrient concentrations and the reasons behind their
dynamics, as this information is available elsewhere (see Ærtebjerg
et al., 2001; EEA, 2005; Artioli et al., 2008; Vermaat et al., 2008).
However time-series of nutrient concentrations are presented
together with the other state indicators in order to increase the
usefulness of this paper.

For benthic ecosystems, we assessed benthic floral and faunal
communities as well as bottom oxygen conditions. Depth limitation
of macrophyte communities has been found to demonstrate the
effects of light attenuation in the pelagic zone (Duarte, 1991;
Nielsen et al., 2002; Krause-Jensen et al., 2005) while their spatial
extent can be linked to benthic oxygen conditions (Zaitsev and
Mamaev, 1997). Macrozoobenthos can benefit from an increased
‘rain’ of pelagic-derived organic matter, but suffer under conditions
of hypoxia (Pearson and Rosenberg, 1978). No benthic indicators
were selected for the North Sea due to the widespread impact of
l do ecosystem indicators communicate the effects of anthropogenic
2.017
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a

Fig. 2. Trends in pelagic and benthic eutrophication indicators in the Baltic Proper: (a) phytoplankton biomass as indicated by mean summer chlorophyll a concentration; (b) water
transparency (and, indirectly, cyanobacteria biomass) as indicated by summer (d) and winter (B) Secchi depth; (c) mean annual pool of TN (B) and TP (d); (d) molar ratio of N:P,
the solid line denotes the molar Redfield ratio of 16:1; (e) bottom oxygen as indicated by area of benthic hypoxia; and (f) macrophyte depth limit as indicated by maximum depth of
Zostera marina (r¼ 0.84, p< 0.001).
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trawling (Callaway et al., 2007). Indicators regarding benthic
macrophytes vary between seas. A meta-data analysis of informa-
tion derived from the literature assessed changes in depth limita-
tion of eelgrass (Z. marina) in the Baltic Proper. Spatial extent of the
Black Sea’s Phyllophora field was selected to illustrate the impacts of
hypoxia on this biologically diverse benthic community. Compa-
rable macrophyte time-series were unavailable for the Northern
Adriatic.

A time-series reflecting eutrophication effects on macro-
zoobenthic biomass was only available for the Black Sea. A meta-
data analysis of Mytilus galloprovincialis biomass data was assessed
for the northwest shelf. Zoobenthos data for the Baltic Proper are
not evaluated here as much of the Baltic Proper has been primarily
hypoxic or anoxic since the 1960s with no or reduced zoobenthos
(Karlson et al., 2002). For the Adriatic, too few data were available
to estimate quantitative trends in zoobenthos biomass; further-
more Scardi et al. (1997) suggest suspended sediment, rather than
eutrophication, as the primary driver of change in zoobenthos
composition.

Different ways of reporting bottom oxygen measurements were
also encountered – hypoxic area (area with oxygen< 2 ml l�1) is
Please cite this article in press as: McQuatters-Gollop, A., et al., How wel
eutrophication?, Estuar. Coast. Shelf Sci. (2009), doi:10.1016/j.ecss.2009.0
used as an indicator of bottom oxygen in the Baltic and Black Seas
while dissolved oxygen concentration (ml l�1) is the indicator used
in the Northern Adriatic (Table 1).

3. Results

3.1. Pelagic responses

Partially due to its low salinity, the strongest response to
eutrophication in the open Baltic Proper occurs in the N-fixing
cyanobacteria, blooms of which have become common since the
1960s (Finni et al., 2001). This trend is approximated here by
a declining Secchi depth (Fig. 2b, see also Fleming-Lehtinen et al.,
2007). Nutrients in the Baltic have undergone a series of trends.
Both TN and TP increased during 1970s and 1980s, before a large
drop in TP occurred during the early 1990s, after which TP steadily
increased (Fig. 2c). The N:P ratio (Fig. 2d) was near the ‘ideal’
Redfield ratio of 16:1, but has shown a distinct decrease since 1994,
indicating an increasing availability of P relative to N. This supports
the notion that nutrient conditions are increasingly favouring
cyanobacteria, possibly via the positive feedback of P reflux linking
l do ecosystem indicators communicate the effects of anthropogenic
2.017
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benthic and pelagic environments (Smith, 1983; Kahru et al., 2000;
Vahtera et al., 2007). Due to this feedback, Baltic open water pelagic
conditions cannot be discussed separately from trends in bottom
hypoxia. Bottom hypoxia in the Baltic shows a declining trend from
the 1970s to the early 1990s (Fig. 2e). This corresponds to a so-
called stagnation period with no major saline incursions from the
North Sea, but also a progressive downward erosion of the halocline
leading to oxygenation of bottom sediments (Gerlach, 1994; Conley
et al., 2002).

In the coastal North Sea, phytoplankton biomass has shown an
increasing trend since the 1980s (Fig. 3a). Secchi depth has been
increasing since the mid-1970s (Fig. 3b), a change that has been
linked to an increase in Atlantic inflow into the North Sea
(McQuatters-Gollop et al., 2007). This apparent paradox – higher
phytoplankton biomass yet greater water clarity – is exacerbated by
declining nutrient concentrations (Fig. 3c). Coastal chlorophyll and
water clarity have been positively correlated, while chlorophyll and
TN and TP concentrations are negatively correlated (see also
McQuatters-Gollop et al., 2007). Additionally, a positive correlation
was observed between annual mean chlorophyll a and annual
mean dissolved silica (Si) concentration (data not shown). The
increase in phytoplankton biomass since the mid-1980s,
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Fig. 3. Trends in pelagic and benthic eutrophication indicators in the coastal North Sea: (a)
water transparency as indicated by summer (d) and winter (B) Secchi depth; (c) mean annu
molar Redfield ratio of 16:1; (e) phytoplankton community composition as represented b
onwards).

Please cite this article in press as: McQuatters-Gollop, A., et al., How wel
eutrophication?, Estuar. Coast. Shelf Sci. (2009), doi:10.1016/j.ecss.2009.0
O
O
F

and particularly of the diatom fraction since the early 1990s (Fig. 3a
and e), therefore may be related to greater availability of Si (Officer
and Ryther, 1980; Humborg et al., 2000; Wirtz and Wiltshire, 2005),
as well as decreased turbidity. The annual molar ratio of N:P has
consistently been greater than the Redfield ratio since at least 1980
(Fig. 3d). The increase in N:P is partially an artefact of the similar
rate of decline of TN and TP concentrations (Fig. 3e). A peak ratio of
nearly 60 in the early 1980s has since been followed by ratios
fluctuating around 30. The highest value of this ratio coincided with
a low proportion of diatoms although there is no significant
statistical correlation between N:P ratio and diatom fraction,
however, other workers have also observed a link between changes
in nutrient ratios and phytoplankton community composition in
the coastal North Sea (Philippart et al., 2000; Lancelot et al., 2006,
among others).

Chlorophyll data for the Northern Adriatic show two peaks –
around 1988 and 1998 – with a strong decline since 2000
(Fig. 4a). Secchi depth data (Fig. 4b) suggest a decrease during the
1990s followed by an increase around 1998. Trends in phyto-
plankton could explain trends in turbidity, but the data series is
too short for any certainty here. Further, the Northern Adriatic is
consistently much more turbid than the other study areas. Given
D
P
R

d

b

phytoplankton biomass as indicated by mean annual chlorophyll a concentration; (b)
al concentrations of TN (B) and TP (d); (d) molar ratio of N:P, the solid line denotes the
y the ratio of abundance of diatoms to dinoflagellates (r¼ 0.75, p< 0.001, from 1980
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Fig. 4. Trends in pelagic and benthic eutrophication indicators in the Northern Adriatic: (a) phytoplankton biomass as indicated by mean summer chlorophyll a concentration; (b)
water transparency as indicated by summer (d) and winter (B) Secchi depth; (c) mean annual concentrations of DIN (B) and TP (d); (d) molar ratio of N:P, the solid line denotes
the molar Redfield ratio of 16:1; (e) phytoplankton community composition as represented by the ratio of abundance of diatoms to dinoflagellates (r¼ 0.82, p< 0.001); (f) bottom
oxygen as indicated by bottom dissolved oxygen concentration.
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Rthat it is also the shallowest, suspended sediments can be

expected to interfere with a correlation between phytoplankton
and turbidity, as is the case in the coastal North Sea (McQuatters-
Gollop et al., 2007). Nutrient concentrations showed no clear
trend but were variable throughout the time-series, also due to
the high influence of water–sediment interaction in those near-
shore stations (Fig. 4c). After high, but variable, N:P ratios
between 1985 and 1995, N:P has since returned to values close to
the Redfield ratio (Fig. 4d). With the exception of the early 1990s,
the ratio of diatoms to dinoflagellates has been increasing since
the early 1980s (Fig. 4e). The steep decline in this proportion after
1998, coinciding with a general decrease in phytoplankton
biomass, is difficult to explain. The decrease in phytoplankton
biomass, shift in phytoplankton community composition towards
diatoms and decreased N:P ratio may suggest a declining impact
of eutrophication in the Northern Adriatic pelagic ecosystem
despite the unclear trends in turbidity.

On the northwest Black Sea shelf, the 1970s and 1980s were
characterised by high phytoplankton biomass and an increased
number of mass blooming species, most of which were flagellates,
especially dinoflagellates, euglenophytes and prymnesiophytes
(Bodeanu et al., 2004). The steady decline in water transparency
Please cite this article in press as: McQuatters-Gollop, A., et al., How wel
eutrophication?, Estuar. Coast. Shelf Sci. (2009), doi:10.1016/j.ecss.2009.0
from the 1960s (Fig. 5b) inversely approximates the trend in
phytoplankton biomass (Fig. 5a). The change from diatom domi-
nated phytoplankton to these non-siliceous species coincided with
decreasing trends in Si loads of the Danube, whereas N and P loads
increased during the 1970s and 1980s (Humborg et al., 1997). Since
the mid-1980s, nitrogen and phosphorus concentrations have
declined in Black Sea waters (Fig. 5c) Molar N:P ratio was high
during the early 1980s suggesting relatively greater N loading
(Fig. 5d). During the 1990s it was slightly above the Redfield ratio,
but during the last decade N:P ratio has shown an increasing trend.
Should there be a relationship between diatom fraction and N:P
ratio, the data series is too short to suggest what it might be,
however diatom and dinoflagellate abundances have decreased in
the Black Sea while abundance of ‘other’ phytoplankton groups,
such as cyanophytes and haptophytes, has increased (Bodeanu
et al., 2004). Since 2000, coincidence in the decline in phyto-
plankton biomass (Fig. 5a), increase in Secchi depth (Fig. 5b) and
increase in diatom fraction (Fig. 5e) supports claims that the shelf
has entered a period of recovery (Bodeanu et al., 2004; Mee et al.,
2005). Bodeanu et al. (2004) further argues that the phytoplankton
community has returned to a composition similar to that found
before 1970.
l do ecosystem indicators communicate the effects of anthropogenic
2.017
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Fig. 5. Trends in pelagic and benthic eutrophication indicators in the NW Black Sea shelf: (a) phytoplankton biomass as indicated by mean summer phytoplankton biomass; (b)
water transparency as indicated by summer (d) and winter (B) Secchi depth; (c) mean annual concentrations of DIN (B) and DIP (d); (d) molar ratio of N:P, the solid line denotes
the molar Redfield ratio of 16:1; (e) phytoplankton community composition as represented by the ratio of abundance of diatoms to dinoflagellates (r¼ 0.61, p< 0.01); (f) bottom
oxygen as indicated by hypoxic area; (g) macrophyte extent as represented by spatial area of Phyllophora field (r¼ 0.99; p< 0.001); and (h) zoobenthos biomass as indicated by the
biomass of Mytilus galloprovincialis.
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3.2. Benthic responses

In the Baltic Proper the depth limits of Z. marina have clearly
decreased since the beginning of the 20th century from 6–10 m
(8.7� 0.7 m on average) during the 1950s to 1980s, to 4–6 m
(5.1�0.4 m on average) in contemporary times (Fig. 2f, see also
Nielsen et al., 2002). The data do not indicate a levelling off of this
trend. The change in depth range of Zostera occurrence appears to
be related to decreasing Secchi depth in the Baltic Proper. This
suggests that shading by pelagic algae is a key factor in depth
Please cite this article in press as: McQuatters-Gollop, A., et al., How wel
eutrophication?, Estuar. Coast. Shelf Sci. (2009), doi:10.1016/j.ecss.2009.0
limitation of this species (Fig. 2, also Nielsen et al., 2002). Trends in
hypoxic area (Fig. 2e) for the Baltic Proper were discussed above.

In the Northern Adriatic, summer bottom dissolved oxygen
decreased from the 1960s until the early 1990s; the most recent
data may suggest an increase in dissolved oxygen, but this is
inconclusive as data are sparse (Fig. 4f).

The spatial extent of the biologically diverse community domi-
nated by the red alga Phyllophora spp. was already contracting in
the Black Sea by the time bottom hypoxia became a regular
occurrence in the early 1970s (Fig. 5g) (Zaitsev and Mamaev, 1997;
l do ecosystem indicators communicate the effects of anthropogenic
2.017
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Langmead et al., 2009). The hypoxic area increased throughout the
1970s and 1980s, peaking in 1990 (Fig. 5f). Faunal mortalities were
common during the 1970s and 1980s (Bodeanu et al., 2004). These
decades also saw a decrease in biomass of the bivalve M. gallopro-
vincialis (Fig. 5h) which succumbed to prolonged periods of hypoxia
(Zaitsev, 1998; Langmead et al., 2009); however, this trend may also
be partially explained by predation by the invasive carnivorous sea
snail, Rapana venosa (Zaitsev, 1992). As phytoplankton biomass
decreased during the 1990s (Fig. 5a), the hypoxic area also
decreased (Fig. 5f). Recent evidence suggests that Phyllophora beds
are beginning to recover (Mee et al., 2005). The changes in hypoxic
area are likely related to nutrient inputs from the Danube River and
associated pelagic productivity; the reduced hypoxic area during
the 1990s corresponds well with a decrease in nutrient concen-
trations as a result of the major reduction in industrial farming
operations in the catchment (Mee et al., 2005).

4. Discussion

4.1. Comparison of study areas

Europe’s regional seas clearly show conventional (i.e. Pearson
and Rosenberg, 1978; Cloern, 2001) responses to nutrient enrich-
ment such as enhanced phytoplankton growth and organic loading
of benthic environments. However the precise effects, as well as the
course and recovery from eutrophication following reduced
nutrient loading, vary widely. Cyanobacterial blooms are a feature
only of the Baltic with its low salinities (Wasmund, 1997). Proxy
indicators of these blooms suggest that eutrophication is wors-
ening in this system. The coastal North Sea shows a clear increase in
phytoplankton biomass. While in some systems increased phyto-
plankton biomass may correspond to an increase in nutrients, in
the North Sea TN and TP are decreasing in coastal waters and
phytoplankton are probably responding to other environmental
factors (McQuatters-Gollop et al., 2007). Although declining,
nutrient concentrations remain in excess indicating that eutro-
phication continues to be a concern in some near-shore areas
(Lancelot et al., 2006; Carstensen et al., 2007). A probable expla-
nation is that phytoplankton in coastal North Sea waters have
previously been light-limited (Pätsch and Radach, 1997), but the
present hydrological regime has reduced light-limitation allowing
them to better use available nutrients (McQuatters-Gollop et al.,
2007).

Three regional seas, and perhaps also the Baltic (see Jaanus et al.,
2007) show an increasing trend in the proportion of diatoms
relative to dinoflagellates. The causes of this trend need further
investigation. CPR data for the coastal North Sea show an increase
in phytoplankton biomass but a decrease in phytoplankton abun-
dance. This could be explained by changes in the nanoplankton
community, as reported by Hickel (1998) for Helgoland Roads, or in
phytoplankton cell size, as reported by Philippart et al. (2000) for
the Wadden Sea. However, this phenomenon has been observed
throughout much of the North Atlantic (Leterme et al., 2006) and so
is unlikely to be caused by eutrophication. Finally, changes in Si
availability due to increased water temperatures may provide
a partial explanation for the increase in diatom abundance (Natori
et al., 2006).

Effects on benthic ecosystems have been difficult to ascertain
consistently over the study areas, but the Black and Baltic Seas have
both suffered from hypoxia aggravated by eutrophication. However,
in the Baltic Proper, hypoxia is closely interwoven with natural
climate events that drive saline intrusion as well as with eutro-
phication. In the Northern Adriatic and northwest Black Sea, indi-
cators show a decline in phytoplankton biomass and an
improvement in benthic oxygen conditions (although change in
Please cite this article in press as: McQuatters-Gollop, A., et al., How wel
eutrophication?, Estuar. Coast. Shelf Sci. (2009), doi:10.1016/j.ecss.2009.0
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bottom oxygen is much less clear in the Northern Adriatic) sug-
gesting that these two ecosystems are recovering from eutrophi-
cation. While reduced nutrient loading (Artioli et al., 2008) is the
most likely reason for recovery of both ecosystems, it is the result of
abatement for the Northern Adriatic but of economic collapse for
the Black Sea shelf. With the dissolution of the Soviet Union and
collapse of industrial farming in the shelf’s catchment, as well as
implementation of EU policy directives (notably the Nitrates and
Urban Waste Water Treatment Directives) in Western Europe,
nutrient loads to the Black Sea shelf declined and nutrient
concentrations in the water column reflect this. The change in N:P
ratio may be explained by more effective P relative to N abatement
in the catchment. However, a reversal in trends could occur on the
Black Sea shelf if economic recovery is not paired with nutrient
management.

A key factor distinguishing the four basins is exchange and
residence time. Here the Baltic Proper stands out as a basin
particularly sensitive to nutrient inputs. Limited exchange and long
retention times mean that current eutrophication is a legacy of past
nutrient loads. The Black Sea, which also has limited exchange, has
a sink that removes nutrients from biological availability. Once
nutrients have passed through the halocline via phytoplankton
sedimentation to the vast and deeper central water body of the
Black Sea, they are removed for time scales of hundreds of years
(Sorokin, 2002). The shallower Baltic Sea also has a halocline
capturing nutrients below. However, due to its shallowness, sedi-
ment–water interactions and varying oxygenation status induced
by vertical fluctuations of the halocline lead to frequent exchange of
P to and from the sediments. During Qtimes when the halocline
becomes shallower and larger areas become anoxic, annual P
mobilization may correspond to some 20% of total P stocks in the
Baltic proper (Conley et al., 2002). Thus, both seas have large
internal nutrient pools below the halocline, but in the Baltic case
this pool is a temporary one that is easily remobilised when
conditions change. Changes in the vast deep nutrient pool of the
central Black Sea are much less influenced by anthropogenic
emissions, at least on decadal time scales. It is possible that this sink
has spared the Black Sea from worse eutrophication impacts, but
better information about exchange within the Black Sea is clearly
needed (see also Artioli et al., 2008). The coastal North Sea lies at
the other extreme, being well flushed by the Atlantic Ocean. Rela-
tive to the Baltic and Black Seas, eutrophication in the coastal North
Sea has had relatively mild and localized effects despite substan-
tially heavier nutrient loading (EEA, 2005; Artioli et al., 2008;
Vermaat et al., 2008). The Northern Adriatic is intermediate in
terms of exchange, and also in terms of the severity of
eutrophication.

4.2. Climate confounds the eutrophication signal

European marine ecosystems are subject to a range of anthro-
pogenic pressures such as chemical contamination, habitat loss,
and overharvesting. Any suite of indicators for eutrophication
needs to be embedded within a larger indicator suite capturing
a wide range of interrelated or synergistic anthropogenic pressures
as well as natural variability. Climate deserves specific mention as
the discussion has shown that it can be difficult to separate the
effects of climate variability from those of eutrophication. Either, or
both, may lie behind increased algal productivity (McQuatters-
Gollop et al., 2007), altered food webs (Daskalov, 2003; Österblom
et al., 2007), changes in phytoplankton community composition
with increases in undesirable or harmful species (Sellner et al.,
2003) and bottom hypoxia (Conley et al., 2002).

A climate-driven regime shift in the North Sea during the 1980s
(Beaugrand, 2004), with effects on water transparency and
l do ecosystem indicators communicate the effects of anthropogenic
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phytoplankton biomass, could explain inconsistencies in regional
indicator trends, notably increased chlorophyll coinciding with
increased Secchi depth (McQuatters-Gollop et al., 2007). The North
Sea has shifted from a boreal system to a warm temperate system,
and its characteristic features have changed, with North Sea waters
becoming increasingly warm and clear. Consequently, increases in
abundance of warm water zooplankton (Beaugrand et al., 2002)
and phenological changes have also been recorded in the region
(Edwards and Richardson, 2004). The 1980s regime shift was not
limited to the North Sea/North Atlantic. Near-synchronous
ecological shifts also occurred in the Mediterranean (Molinero
et al., 2005; Conversi et al., in press), Pacific (Hare and Mantua,
2000), Baltic (Alheit et al., 2005) and Black Seas (Niermann et al.,
1999; Oguz and Gilbert, 2007), further supporting the likely
climate-driven nature of these changes.

In the Baltic Sea, the extent of bottom hypoxia is interwoven
with climate-modulated saline incursions and exchange across the
halocline (Conley et al., 2002), as well as organic loading from an
enriched pelagic zone. Nutrient budgets indicate that P reflux from
sediments is by far the predominant source of P (Savchuk, 2005;
Artioli et al., 2008), emphasizing both the role of climate and the
legacy of past nutrient enrichment on current ecosystem states.
However, no clear trends are observable in cyanobacteria (for the
reasons mentioned in Section 2.2) or in situ chlorophyll concen-
trations (Fig. 2a). There is also evidence of a regime shift in the
Baltic pelagic ecosystem, but the relative roles of climate, eutro-
phication and fishing pressure are still under debate (Alheit et al.,
2005; Österblom et al., 2007; Möllmann et al., 2008).

It is postulated that climate also plays a role on the northwest
Black Sea shelf, with mild winters suppressing vertical mixing and
limiting phytoplankton blooms (Oguz, 2005). However, this rela-
tionship appears to be non-linear; in 2001 a climate anomaly, with
unusually high sea surface temperatures and increased stratifica-
tion, caused sea-wide algal blooms, an increased dinoflagellate
fraction and bottom hypoxia, all of which have been previously
associated with eutrophication (McQuatters-Gollop et al., 2008).

The observed decline in oxygen concentrations in the Northern
Adriatic during the 1970s and 1980s may not be a consequence of
eutrophication as this indicator has previously been found to be
modulated primarily by climate rather than nutrient loading in the
Northern Adriatic (Degobbis et al., 2000). If so, this could explain
the decline in bottom oxygen despite the decreasing impact of
eutrophication on the pelagic indicators mentioned above.

4.3. Insights provided by ecosystem indicators

Phytoplankton biomass is a common indicator of eutrophica-
tion. The trends indicated in Figs. 2–5 follow both general and site-
specific knowledge of the effects that eutrophication has on pelagic
ecosystems, and so this indicator provides consistent insights.
Unfortunately similar measurements are not undertaken in
different seas, so comparison across seas is limited. This will be
a major upcoming challenge for the European Marine Strategy
Directive, which requires indicators and their assessment
approaches and methods to be comparable both within and
between marine regions (European Commission, 2008). The Baltic
Sea poses particular difficulties for this indicator as due to the
problems with direct measurement Secchi depth is used as a proxy
for phytoplankton biomass; however Erlandsson and Stigebrandt
(2006) show that it is possible to accommodate interference. The
use and interpretation of Secchi depth in the coastal North Sea also
pose particular problems. Here, Secchi depth cannot be used as
a proxy for phytoplankton biomass. In the Northern Adriatic and
northwest Black Sea shelf trends in Secchi depth do appear to
follow those of phytoplankton biomass. However, use of Secchi
Please cite this article in press as: McQuatters-Gollop, A., et al., How wel
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depth to proxy phytoplankton biomass requires good under-
standing of the underlying mechanics and sources of interference.
Site-specific features mean that it cannot be used on its own to
compare phytoplankton biomass across regional seas.

Unfortunately, the N:P ratio does not provide consistent insights
into phytoplankton composition. There is no recurrent pattern
across the four study areas. In the Black Sea, N:P increases coincide
with a greater proportion of diatoms in the phytoplankton
community. A similar trend might be occurring in the coastal North
Sea since 1995. However in the Northern Adriatic, the diatom
fraction increased as the N:P ratio declined. A general increase in
diatom fraction is probably attributable to other factors, notably the
supply of silicate. Consequently, the N:P ratio is a poor ecosystem
indicator and will remain so until a clear relationship with other
ecosystem variables can be verified. Nevertheless, we identify two
instances where it is useful: it has potential for the Baltic where
declining N:P ratios could augment Secchi depth to indicate
increased cyanobacterial activity; and the N:P ratio can be used to
identify the most probable growth-limiting nutrient, essential
information for nutrient management strategies. The increase in
diatom fraction in all seas could suggest ‘good news’, particularly if
an increase in fodder zooplankton results (Verity et al., 2002). The
use of compositional changes in the phytoplankton community as
an eutrophication indicator clearly needs further work. Continued
monitoring of phytoplankton community compositions will be
needed to elucidate any relationship with nutrient ratios.

In some systems bottom hypoxia may offer good insights into
responses to eutrophication, although care should be taken with
interpretation as its link to eutrophication varies regionally. For the
northwest Black Sea shelf bottom hypoxia is clearly a product of
excessive phytoplankton growth. For the Baltic, it is the conse-
quence and cause of excessive phytoplankton growth because of its
effect on sedimentary reflux of P. Along with Secchi depth and N:P
ratio, it is an indicator of mechanisms that drive cyanobacterial
growth. Separation of eutrophication and climate signals in bottom
hypoxia remains a challenge for further research: for instance,
bottom dissolved oxygen in the Northern Adriatic has not respon-
ded solely to changes in phytoplankton biomass, but is also largely
regulated by climatic events (Degobbis et al., 2000).

The response of benthic biological indicators to eutrophication
is somewhat unclear. Depth limitation of seagrasses, such as
Zostera, in the Baltic is known to be strongly influenced by
increased turbidity following nutrient enrichment, and has been
proposed as a bioindicator under the European Water Framework
Directive (Krause-Jensen et al., 2005; Schories et al., 2009). Depth
limitation of Baltic macroalgae, such as Fucus vesiculosus, appears
to function less straightforwardly as an indicator, possibly due to
a more complicated response to eutrophication (Torn et al., 2006).
In the Black Sea, however, the decline and possible recovery of the
macroalga Phyllophora appear to be closely linked to eutrophica-
tion (Mee et al., 2005). It has previously been observed that
responses to increased nutrients vary across macroalgal taxa (Fox
et al., 2008) and, while they were not explored during ELME,
other macroalgal groups, particularly filamentous opportunistic
genera such as Ulva, Enteromorpha, Ectocarpus and Polysiphonia,
have also been used successfully as eutrophication indicators in
European seas (Korpinen et al., 2007; Scanlan et al., 2007). This
may mean that opportunistic groups are more useful macrophyte
indicators of eutrophication than as perennial macroalgae. Causes
for trends in zoobenthic biomass are also unclear. It is possible
that changes observed in the macrozoobenthos of the northwest
Black Sea shelf reflected an initial increase in biomass with the
onset of eutrophication followed by a decrease as the shelf
hypoxic area expanded as implied by Mee et al. (2005), but the
data are insufficient for inferring conclusive trends. As in the
l do ecosystem indicators communicate the effects of anthropogenic
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Baltic Proper, trends in Black Sea macrozoobenthos biomass can
be attributed to a range of factors and so this indicator provides
only limited insights into the effects of eutrophication on benthic
ecosystems.

One reason for the lack of clear relationships between time-
series could be due to the spatially inhomogeneous nature of the
datasets. Many of the time-series used here are based on repeated
measurements at one station or in a particular localized area.
Therefore in some of our study regions spatial discrepancies exist
between datasets, making the identification of relationships
especially difficult. Even in regions where some spatially
comprehensive data do exist time-series of other indicators at an
equivalent scale are rarely available; for example, the Continuous
Plankton Recorder survey provides plankton data for much of the
North-East Atlantic, but other ecosystem indicators are largely
restricted to more limited spatial areas (e.g. nutrient and Secchi
depth data are primarily available only for the North Sea and
a few other coastal regions). This mismatch of scale is a real
problem in marine research which can only partially be solved by
modelling exercises which extrapolate information to a larger
spatial scale; however, there is no substitute for thorough moni-
toring programs.

4.4. Implications for policy

This paper has focused on ecosystem state indicators for which
long time-series were available, although coverage has not always
been complete or consistent. Our requirement for a long time-
series aimed at capturing ecosystem states prior to the emergence
of eutrophication symptoms, the period when eutrophication was
at its worst, and contemporary times. The last period is charac-
terised by effort to abate nutrient emissions and loads to regional
seas. Policies addressing eutrophication have been implemented
throughout much of the European Union, in other words most
countries located in the catchment of Europe’s regional seas. But
the EU Water Framework Directive remains at an early stage of
implementation and there are new pressures to expand agriculture
for fuel crops as well as food and fibre. Our analysis highlights
a very obvious implication for policy: that regional specificity in
ecosystem response to anthropogenic nutrient loading means that
policies must be tailored to each regional sea. Regional variation in
policy is in accordance with the new Marine Strategy Directive;
however the societal acceptability in different regions that imple-
ment abatement measures of varying severity will be an issue for
the political arena. We identify three aspects from the discussion
above that can be expected to influence regionalised policy devel-
opment and implementation: (1) the severity of eutrophication,
past and present; (2) evidence of ecosystem recovery; and (3) other
sources of pressure on marine ecosystems.

The severity of eutrophication is coupled to the urgency for
policy development. The Baltic Proper, with its positive feedback
linking pelagic and benthic ecosystems, stands out as the regional
sea with the worst symptoms of eutrophication and with the
greatest urgency for policy action. Increased phytoplankton
biomass in the coastal North Sea also suggests a degree of urgency.
Climate is an important regulator of phytoplankton biomass across
the North Sea and climatic changes have provided favourable
conditions for phytoplankton growth. Although nutrient concen-
trations are declining in the coastal North Sea, nutrients remain in
excess and coastal phytoplankton are not nutrient limited
(McQuatters-Gollop et al., 2007; Artioli et al., 2008; Vermaat et al.,
2008). For the Northern Adriatic and northwestern Black Sea shelf,
current ecosystem conditions appear to be improving. However,
while recovery in the Northern Adriatic can be attributed to policy
and nutrient abatement, ecosystem recovery in the Black Sea has
Please cite this article in press as: McQuatters-Gollop, A., et al., How wel
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not occurred due to policy effectiveness, but is partly a product of
economic collapse. Concerns about continuation of current trends
in the Black Sea, and the possibility of their reversal should
economic recovery not be Qpaired with nutrient controls, highlight
urgency for policy development and implementation in the
catchment of the northwest Black Sea shelf.

The indicators do not suggest recovery in the Baltic despite
nearly two decades of policy implementation and economic
collapse in former communist countries. An important eutrophi-
cation symptom, cyanobacterial blooms are fuelled by sedimentary
nutrient recycling and a positive feedback that augments P avail-
ability and may imply that the system can be expected to be rela-
tively insensitive to policy measures. A scenario analysis (Wulff
et al., 2007) has shown that policy implementation could lead to
recovery over a time frame of several decades (Savchuk and Wulff,
in press). Thus the commonly felt urgency (HELCOM, 2006) of
eutrophication abatement measures may lose its momentum and
social acceptance given that a slow system response will not reveal
any improvement during a decade or more. Recent studies by Casini
et al. (2008) and Daskalov (2002) suggest that top-down control,
i.e. the disappearance of top predators, has a cascading effect all
through the food web, eventually resulting in an increase in
phytoplankton biomass as grazer levels are reduced.

The third aspect we identify relates to the multiple sources of
pressure on marine ecosystems, such as the confounding effects of
fisheries (Daskalov, 2002) and climate (McQuatters-Gollop et al.,
2007; Artioli et al., 2008; Vermaat et al., 2008). Understanding the
natural variability of fish and plankton populations through
monitoring is a requirement of the Marine Strategy Directive which
may eventually enable the separation of eutrophication effects
from those of other ecosystem pressures. In particular nutrient
abatement and system response must be carefully considered in
the context of potentially strong climatic influences. Proper
consideration of climate introduces challenges for policy develop-
ment and uncertainties as to when and if expected benefits will
materialise.

5. Conclusions and recommendations

Eutrophication impacts and ecosystem responses are spatially
variable across Europe’s regional seas. Due to differences in indi-
cators monitored and assessment methodologies used it is difficult
to compare eutrophication status among seas. Regionally and
methodologically consistent monitoring programmes are needed
in order to facilitate interregional comparability; this is a require-
ment of the Marine Strategy Directive.

Further insight into the causes of site-to-site variability in
ecosystem response to nutrient loading, along with comprehensive
monitoring data, may aid the development of a general predictive
framework accounting for nutrient effects in conjunction with the
moderating influences of local physical, chemical and biological
factors. Predictive models are essential for the management and
control of coastal marine eutrophication, and continued research
into their development is required. Comparative analyses such as
this one will be necessary in order to determine the degree to
which local eutrophication indicators are (or are not) directly and
causally linked to changes in nutrient loading to the systems being
studied. Additionally, standardization of methods used and indi-
cators monitored between regional seas will make such analyses
more robust. However, this need must be balanced with the
continuation of established monitoring programmes which are
providing crucial long-term time-series of data, a point emphasised
in the Marine Strategy Directive.

The indicators suggested in the Marine Strategy Directive have
the potential to provide scientifically founded information
l do ecosystem indicators communicate the effects of anthropogenic
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regarding eutrophication assessment to policy-makers – but only if
multiple indicators are employed as a suite. Due to regional vari-
ability in ecosystem response to increased nutrients, no sole indi-
cator, not even nutrient concentrations themselves, can offer
a comprehensive and comparable insight into the eutrophication
status of European seas. To assess eutrophication effectively, indi-
cators suites must be supplemented with sea-specific knowledge of
ecosystems characteristics and processes; lists of indicators are not
sufficient to determine good environmental status without an
adequate understanding of each system’s attributes gained through
scientific research. Indicators must also be assessed on similar
spatial scales in each regional sea. The interaction of multiple
pressures remains a key challenge for assessing eutrophication as
do separating changes in ecosystem parameters resulting from
nutrient loading from those occurring due to natural seasonal and
interannual dynamics. The continuation of established monitoring
programmes (e.g. the Continuous Plankton Recorder survey (Batten
et al., 2003; Brander et al., 2003, among others), the Romanian
National Institute for Marine Research and Development time-
series (Bodeanu et al., 2004; Cociasu and Popa, 2004, among
others), the Helgoland Roads time-series (Wiltshire and Manly,
2004; Wirtz and Wiltshire, 2005, among others), and the Dutch
Noordwijk and Terschelling monitoring transects (de Vries et al.,
1998; Los and Wijsman, 2007, among others)) will extend existing
datasets and provide baselines with which to compare future
indicator trends; the Marine Strategy Directive specifically requests
that existing monitoring operations should form the basis of future
programmes in order to avoid duplication of effort. Coherence of
monitored indicators and methodologies will facilitate comparison
of eutrophication effects between European seas.
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Pätsch, J., Radach, G., 1997. Long-term simulation of the eutrophication of the North
Sea: temporal development of nutrients, chlorophyll and primary production in
comparison to observations. Journal of Sea Research 38, 275–310.

Pearson, T.H., Rosenberg, R., 1978. Macrobenthic succession in relation to organic
enrichment and pollution of the marine environment. Oceanographic Marine
Bulletin Annual Review 16, 229–311.

Perus, J., Bonsdorff, E., 2003. Long-term changes in macrozoobenthos in the Aland
archipelago, northern Baltic Sea. Journal of Sea Research 52, 45–56.

Philippart, C.J.M., Cadee, G.C., van Raaphorst, W., Riegman, R., 2000. Long-term
phytoplankton–nutrient interactions in a shallow coastal sea: algal community
structure, nutrient budgets, and denitrification potential. Limnology and
Oceanography 45, 131–144.

Pirrone, N., Trombino, G., Cinnirella, S., Algieri, A., Bendoricchio, G., Palmeri, L.,
2005. The Driver-Pressure-State-Impact-Response (DPSIR) approach for inte-
grated catchment–coastal zone management: preliminary application to the Po
catchment–Adriatic Sea coastal zone system. Regional Environmental Change 5,
111–137.

Redfield, A.C., Ketchum, B.H., Richards, F.A., 1963. The influence of organisms on the
composition of sea water. In: Hill, M.N. (Ed.), The Sea. John Wiley, New York, pp.
26–77.

Richardson, A.J., Walne, A.W., John, A.W.G., Jonas, T.D., Lindley, J.A., Sims, D.W.,
Stevens, D., Witt, M., 2006. Using Continuous Plankton Recorder data. Progress
in Oceanography 68, 27–74.

Rijnsdorp, A., Buys, A., Storbeck, F., Visser, E., 1998. Micro-scale distribution of beam
trawl effort in the southern North Sea between 1993 and 1996. ICES Journal of
Marine Science 55, 403–419.

SAHFOS, 2004. Total diatom and dinoflagellate abundances (North Sea) 1958–2003,
as recorded by the Continuous Plankton Recorder, Plymouth, UK.

Savchuk, O.P., 2005. Resolving the Baltic Sea into seven subbasins: N and P budgets
for 1991–1999. Journal of Marine Systems 56, 1–15.
l do ecosystem indicators communicate the effects of anthropogenic
2.017

1669

http://helcom.navigo.fi/stc/files/BSAP/FINAL%20Eutrophication.pdf
http://helcom.navigo.fi/stc/files/BSAP/FINAL%20Eutrophication.pdf
http://www.ices.dk/reports/BCC/2008/WGIAB08.pdf
http://www.ices.dk/reports/BCC/2008/WGIAB08.pdf
http://www.helcom.fi/environment2/ifs/ifs2007/en_GB/Phytoplankton
http://www.helcom.fi/environment2/ifs/ifs2007/en_GB/Phytoplankton
http://www.mare.su.se/ENG/eng-systemet/eng-systemet.html
http://www.ospar.org/content/content.asp%3Fmenu%20%3D%2000790830300000_000000_000000
http://www.ospar.org/content/content.asp%3Fmenu%20%3D%2000790830300000_000000_000000
http://www.ospar.org/content/content.asp%3Fmenu%20%3D%2000790830300000_000000_000000


A. McQuatters-Gollop et al. / Estuarine, Coastal and Shelf Science xxx (2009) 1–1414

ARTICLE IN PRESS YECSS2882_proof � 4 March 2009 � 14/14

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729
Savchuk, O.P., Wulff, F., in press. Long-term modelling of large-scale nutrient cycles
in the entire Baltic Sea. Hydrobiologia.

Scanlan, C.M., Foden, J., Wells, E., Best, M.A., 2007. The monitoring of opportunistic
macroalgal blooms for the water framework directive. Marine Pollution Bulletin
55, 162–171.

Scardi, M., Di Dato, P., Crema, R., Fresi, E., Orel, G., 1997. Analisi preliminare dei dati
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